an eos implementation for astrophyisical simulations
play

An EOS implementation for astrophyisical simulations A. S. Schneider - PowerPoint PPT Presentation

. . . . . . . . . . . . Introduction . Formalism Neutron Stars CCSN An EOS implementation for astrophyisical simulations A. S. Schneider 1 , L. F. Roberts 2 , C. D. Otu 1 1 TAPIR, Caltech, Pasadena, CA 2 NSCL, MSU, East Lansing, MI


  1. . . . . . . . . . . . . Introduction . Formalism Neutron Stars CCSN An EOS implementation for astrophyisical simulations A. S. Schneider 1 , L. F. Roberts 2 , C. D. Otu 1 1 TAPIR, Caltech, Pasadena, CA 2 NSCL, MSU, East Lansing, MI . . . . . . . . . . . . . . . . . . . . . . . . . . . East Lansing, MI - April 2017

  2. . . . . . . . . . . . . Introduction . Formalism Neutron Stars CCSN Nuclear EOS Equation of state (EOS): Astrophysical relevance Core-collapse supernovae; NS structure and evolution; Merger of compact stars; r -process nucleosynthesis; . . . . . . . . . . . . . . . . . . . . . . . . . . . … ⇒ ε ( n , y , T ) , P ( n , y , T ) , s ( n , y , T ) , …

  3. . . . . . . . . . . . . . . . . Introduction Formalism Neutron Stars CCSN Nuclear EOS . . . . . . . . . . . . . . . . . . . . . . . . Physics Reports 621 (2016) 127–164

  4. . . . . . . . . . . . . Introduction . Formalism Neutron Stars CCSN Nuclear EOS Long-standing problem in nuclear physics. Combines efgorts from: heavy ion collision experiments; nuclear reaction experiments; computer simulations of astrophysical phenomena; computer simulations of dense matuer; theoretical many-body calculations; . . . . . . . . . . . . . . . . . . . . . . . . . . . …

  5. . 1 4 G. Shen et al. 3 H. Shen et al. 2 Latuimer and Swesty Hot-dense EOS available: 5 Nuclear EOS CCSN Neutron Stars Formalism Introduction . Hempel et al. Steiner et al. . Realistic potentials vs Muons? Hyperons? 4 networks SNA vs NSE vs reaction 3 Efgective potentials 2 6 Non-relativistic Relativistic vs 1 Classifjcation: … 7 Banik et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Qvarks? Nuclear forces are complicated ⇒ combine difgerent approaches!

  6. . Introduction . . . . . . . . . . Formalism . Neutron Stars CCSN Nuclear EOS Goals: 1 Write code to construct EOS tables for astrophysical simulations. 2 Easy to update EOS as new nuclear matuer constraints become available. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Make the code open-source. (soon)

  7. . Tie Latuimer & Swesty EOS . . . . . . . . Introduction Formalism Neutron Stars CCSN Tie Lattimer & Swesty EOS [Nucl. Phys. A 535 , 331 (1991)] . Most used EOS for simulations of CCSNe and NS mergers. Non-relativistic compressible liquid-drop description of nuclei. Contains 1 Nucleons; 2 alpha particles; 3 electrons and positrons; 4 photons. Nucleons may cluster to form nuclei. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LS EOS use the single nucleus approximation (SNA).

  8. . . . . . . . . . . . . Introduction . Formalism Neutron Stars CCSN Tie Latuimer & Swesty EOS In this work, F depends on seven variables: u : volume fraction occupied by heavy nuclei r : generalized size of heavy nuclei n ni : neutron density inside heavy nuclei n pi : proton density inside heavy nuclei n no : neutron density outside heavy nuclei n po : proton density outside heavy nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . Free energy F ( n , y , T ) = F o + F h + F α + F e + F γ F o ≡ nucleons outside heavy nuclei (nucleon gas) F h ≡ nucleons clustered into heavy nuclei n α : alpha particle density

  9. . . . . . . . . . . . . . . . Introduction Formalism Neutron Stars CCSN Tie Latuimer & Swesty EOS Heavy nuclei free energy: Tie EOS of each component: interaction. . . . . . . . . . . . . . . . . . . . . . . . . . F h = F i + F S + F C + F T F i ≡ nucleons inside heavy nuclei F S ≡ surface free energy F C ≡ coulomb free energy F T ≡ translational free energy Nucleons ⇒ local phenomenological Skyrme-type efgective Alpha particles ⇒ hard spheres. Electrons, positrons and photons ⇒ background gas.

  10. . Energy density of bulk nuclear matuer with Skyrme-type interactions . . . . . . . . Formalism Neutron Stars CCSN Tie Latuimer & Swesty EOS h 2 . n h 2 p i t h 2 t h 2 2 m t 1 h 2 2 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E B ( n , y , T ) = ¯ τ n + ¯ τ p +( a + 4 by ( 1 − y )) n 2 2 m ∗ 2 m ∗ ( c i + 4 d i y ( 1 − y )) n 1 + δ i − yn ( m n − m p ) . + ∑ Nucleon efgective mass m ∗ ¯ = ¯ + α 1 n t + α 2 n − t . 2 m ∗ where t = n ⇒ − t = p and vice versa, n n = ( 1 − y ) n and n p = yn . Nucleon kinetic energy density τ t ) 5 ( 2 m ∗ τ t = F 3 / 2 ( η t ( n , y )) , t T 2 π 2 ¯

  11. . . . . . . . . . . . . . . Introduction Formalism Neutron Stars CCSN Tie Latuimer & Swesty EOS t 0 t 0 t 3 i t 3 i 1 . . . . . . . . . . . . . . . . . . . . . . . . . . a = 4 ( 1 − x 0 ) , b = 8 ( 2 x 0 + 1 ) , c i = 24 ( 1 − x 3 i ) , d i = 48 ( 2 x 3 i + 1 ) , δ i = σ i + 1 , α 1 = 1 8 [ t 1 ( 1 − x 1 )+ 3 t 2 ( 1 + x 2 )] , α 2 = 8 [ t 1 ( 2 + x 1 )+ t 2 ( 2 + x 2 )] .

  12. . . . . . . . . . . . . . . Introduction Formalism Neutron Stars CCSN Nuclear surface and Coulomb free energies r and r : generalized nuclear size where 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 4 πα F S = 3 s ( u ) σ ( y i , T ) F C = 5 ( y i n i r ) 2 c ( u ) . s ( u ) : surface shape function c ( u ) : Coulomb shape function σ ( y i , T ) : surface tension per unit area Nuclear virial Tieorem: F S = 2 F C ] 1 / 3 ] 1 / 3 [ πα r = 9 σ [ s ( u ) ( y i n i σ ) 2 / 3 β = 9 2 β c ( u ) c ( u ) s ( u ) 2 ] 1 / 3 ≡ β D ( u ) . [ F S + F C = β

  13. . . . . . . . . . . . . . . Introduction Formalism Neutron Stars CCSN Nuclear surface and Coulomb free energies where 2 u intermediate u : reproduces free energy of pasta phases: cylinders; slabs; . . . . . . . . . . . . . . . . . . . . . . . . . . cylindrical holes. Latuimer & Swesty interpolate D ( u ) with D ( u ) = u ( 1 − u )( 1 − u ) D ( u ) 1 / 3 + uD ( 1 − u ) 1 / 3 u 2 +( 1 − u ) 2 + 0 . 6 u 2 ( 1 − u ) 2 2 u 1 / 3 + 1 D ( u ) = 1 − 3 as u → 0 reproduces free energy of spherical nuclei as u → 1 reproduces free energy of “bubble nuclei”

  14. . . . . . . . . . . . . . . . . Introduction Formalism Neutron Stars CCSN Nuclear surface and Coulomb free energies . . . . . . . . . . . . . . . . . . . . . . . . Lim (2012)

  15. . . . . . . . . . . . . . . . . . Formalism Neutron Stars CCSN Nuclear surface and Coulomb free energies . Introduction . . . . . . . . . . . . . . . . . . . . . . Surface Tension σ ( y , T ) . 0.8 0.8 n p n ni n n 0.6 0.6 n/n 0 0.4 0.4 n pi ∆ R 0.2 0.2 n no n po 0.0 0.0 -3 -3 -2 -2 -1 -1 0 0 1 1 2 2 3 3 4 4 z (fm)

  16. . . . . . . . . . . . . Introduction . Formalism Neutron Stars CCSN Nuclear surface and Coulomb free energies Set temperature T and proton fraction y i . Solve equilibrium equations: and and n pi Set density to . . . . . . . . . . . . . . . . . . . . . . . . . . . P i = P o , µ ni = µ no , µ pi = µ po , y i = n ni + n pi n ti − n to n t ( z ) = n to + 1 + exp (( z − z t ) / a t ) t = n , p .

  17. . . . . . . . . . . . . Introduction . Formalism Neutron Stars CCSN Nuclear surface and Coulomb free energies where 1 2 and 3 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . Find z t and a t that minimizes ∫ + ∞ [ ] σ ( y i , T ) = F B ( z )+ E S ( z )+ P o − µ no n n ( z ) − µ po n p ( z ) dz . − ∞ [ ] q nn ( ∇ n n ) 2 + q np ∇ n n · ∇ n p + q pn ∇ n p · ∇ n n + q pp ( ) 2 ∇ n p E S ( z ) = q nn = q pp = 16 [ t 1 ( 1 − x 1 ) − t 2 ( 1 + x 2 )] , q np = q pn = 16 [ 3 t 1 ( 2 + x 1 ) − t 2 ( 2 + x 2 )] .

  18. . . . . . . . . . . . . Introduction . Formalism Neutron Stars CCSN Solving the EOS where u u n i u n i . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimize F ( n , y , T ) w.r.t. u , r , n ni , n pi , n no , n po , and n α . A 1 = P i − B 1 − P o − P α = 0 , A 2 = µ ni − B 2 − µ no = 0 , A 3 = µ pi − B 3 − µ po = 0 . B 1 = ∂ F F , ∂ u − n i ∂ n i [ y i ∂ F − ∂ F ] B 2 = 1 , ∂ y i ∂ n i [ 1 − y i ] ∂ F + ∂ F B 3 = − 1 , ∂ y i ∂ n i with F = F S + F C + F T .

  19. . . . . . . . . . . . . . . . . Introduction Formalism Neutron Stars CCSN Solving the EOS Constraints . . . . . . . . . . . . . . . . . . . . . . . . n = un i +( 1 − u )[ 4 n α + n o ( 1 − n α v α )] , ny = un i y i +( 1 − u )[ 2 n α + n o y o ( 1 − n α v α )] . µ α = 2 ( µ no + µ po )+ B α − P o v α , ] 1 / 3 r = 9 σ [ s ( u ) , 2 β c ( u )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend