aharonov bohm superselection sectors
play

Aharonov-Bohm superselection sectors Cortona 2018 AQFT: Where - PowerPoint PPT Presentation

Aharonov-Bohm superselection sectors Cortona 2018 AQFT: Where Operator Algebra meets Microlocal Analysis Ezio Vasselli Roma ezio.vasselli@gmail.com Work in progress with C. Dappiaggi and G.Ruzzi Contents Geometry of the Aharonov-Bohm


  1. Aharonov-Bohm superselection sectors Cortona 2018 AQFT: Where Operator Algebra meets Microlocal Analysis Ezio Vasselli Roma ezio.vasselli@gmail.com Work in progress with C. Dappiaggi and G.Ruzzi

  2. Contents • Geometry of the Aharonov-Bohm effect • Dirac fields interacting with background AB-potentials • Interacting Dirac fields vs. sectors • Non-abelian phases • Conclusions and outlooks

  3. � � � � Geometry of the Aharonov-Bohm effect γ γ � B • Interference pattern Electron source S γ ′ γ ′ � • B is directed towards you ❀ • No em field outside the shielded region S (S ∼ R , ideally infinite) ❀ the ”spacetime” is M := ( R 3 − S) × R , π 1 ( M ) = Z • the em potential is A ∈ Z 1 • dR ( M ), F = dA = 0 ❀ A | o = dφ o , φ o ∈ C 1 ( o, R ), ∀ o ⊂ M a.s.c. •

  4. AB assumption: φ o = φ o ( t ) for all o ⊂ M , o a.s.c.. ❀ If ψ solves the free Schroedinger eq. with supp ( ψ ) ⊆ o , then ψ o := ψe − iφ o solves the Schroedinger eq. with interaction A . A (homotopic invariant!) phase shift � exp i γ ∗ γ ′ A appears for coherent superpositions of states of the type ψ o , ψ e , with the loop γ ∗ γ ′ ⊂ and homotopic to o ∪ e . The shift disappears whenever the experimenter: switches off � • B (clearly) • or makes S ”finite” (S ⊃ S’ ❀ M ⊂ M ′ , π 1 ( M ′ ) = 0)

  5. How geometers describe the wavefunctions ψ o : sections ς : M → L , where L → M is the flat line bundle with (l.c.) transition maps λ hk := e − i ( φ oh − φ ok ) ∈ U (1) , o h ∩ o k � = ∅ , [BM]. Actually the following objects are equivalent: 1 - L → M • A : π 1 ( M ) → U (1) 2 - e i � ( ← the phase shift) 3 - A ∈ Z 1 dR ( M ) A o ′ o := φ o ′ | o − φ o ∈ R , ∀ o ⊆ o ′ a.s.c. A ∈ Z 1 ( M asc , R ), ˆ 4 - ˆ • 1 ⇔ 2 ⇐ 3 are well-known, [KN] • 2 ⇒ 3 [Freed], folklore • 3 ⇔ 4 [RRV’]. M asc := base (poset) of a.s.c. subsets

  6. The phase shift can be written in terms of ˆ A : • ℓ : [0 , 1] → M loop • poset approximation of ℓ : a finite cover p ℓ = { o k ∈ M asc } ⊃ ℓ , such that there are o k, 0 , o k, 1 ⊂ o k , o k +1 , 1 = o k, 0 , for all k = 1 , . . . , n . ❀ n � � � A o k o k, 0 − ˆ ˆ � ℓ A = A o k o k, 1 . k =1

  7. Dirac fields interacting with background AB-potentials • M glob.hyp. 4d spacetime A ∈ Z 1 • dR ( M ) ( dA = 0) • ∃ a Clifford bundle and a Dirac bundle DM → M • There is a spin connection ∇ Clifford bundle ❀ one can define / ∇ and / • A Task: construct a Dirac field ψ int such that { i / ∇ + / A − m } ψ int = 0 .

  8. Remark: on any o ∈ M asc we have A = dφ o ❀ ψ int ( e iφ o s ) s ∈ S o ( DM ) , , must be a solution of the free Dirac equation ❀ Idea [Vas]: take a free Dirac field ψ : S ( DM ) → B ( H ) ([Dimock]), and for any o ∈ M asc define ψ o ( s ) := ψ ( e − iφ o s ) ψ o : S o ( DM ) → B ( H ) , � One has ψ o (( i / ∇ + / A − m ) s ) = 0 for all s ∈ S o ( DM ) But, ψ o ′ ( s ) = e − i ˆ A o ′ o ψ o ( s ) for s ∈ S o ( DM ) and o ⊆ o ′ •

  9. Let ς ∈ S o ( DM ⊗L ) and π o ′ : L| o ′ → o ′ × C be local • charts for all o ′ ⊇ o . • Set ς o ′ := { id DM ⊗ π o ′ } ς ∈ S o ′ ( DM ). = e i ˆ A o ′ o ⇒ ς o ′ = e i ˆ A o ′ o ς o ❀ π o ′ π − 1 • o • ψ o ′ ( ς o ′ ) = ψ o ( ς o ) ❀ � ψ int : S ( DM ⊗ L ) → B ( H ), ψ int ( ς ) := ψ o ( ς o ) ❀ Theorem. Given A ∈ Z 1 dR ( M ) and a free Dirac field ψ , there exists the interacting field 1 − 1 ↔ { ψ o : ψ o ′ ( s ) = e − i ˆ A o ′ o ψ o ( s ) } . ψ int

  10. Interacting Dirac fields vs. sectors An ”interacting net”: for all o , set F ( o ) := { ψ o ( s ) , s ∈ S o ( DM ) } ′′ = F free ( o ) ⊂ B ( H ) , R ( o ) := F α ( o ) , α : U (1) → Aut F . Inclusion maps: dictated by ψ o ′ = e − i ˆ A o ′ o ψ o , o ⊆ o ′ ❀ • α ( e − i ˆ A o ′ o ) : F ( o ) → F ( o ′ ) ❀ • • ( F , α ( e − i ˆ A )) precosheaf (more general than a net) ❀ • R = R free is a net R is represented as π = ⊕ κ ∈ Z π κ : R → B ( H ) • π 0 fulfils Borchers [dAH] and Haag duality [V] !

  11. Borchers property ❀ π κ ≃ π κ o := ad u κ • o u κ o ∈ U ( F ( o )) a ”phase” of ψ o ( s ) κ • • Charge transport ❀ z κ o ′ o ∈ R ( o ′ ): z κ o ′ o π κ o ( · ) = π κ o ′ ( · ) z κ o ′ o o ′ o phase of ψ o ′ ( s ′ ) κ ψ o ′ ( s ) κ, ∗ = ψ o ′ ( s ′ ) κ e iκ ˆ A o ′ o ψ o ( s ) κ, ∗ • z κ o ′ e iκ ˆ A o ′ o u κ, ∗ z κ o ′ o = u κ • o Theorem. Pairs ( π κ , z κ ) are sectors with s.d.= 1 (=: sect 1 ( R )) in the sense of [BR], with holonomy � ∗ · · · z κ z κ ( p ℓ ) := z κ o 1 o 11 = exp iκ ℓ A . o n o 0 n Better: sect 1 ( R ) ∋ ( π, z ) 1 − 1 • ↔ ( κ ; A, ψ int ) • Sectors as in [GLRV]: A = dϕ ⇒ z ( p ℓ ) ≡ 1

  12. Non-abelian phases ◦ From topology ( π 1 ( M ) non-Ab): ( π ρ , z ρ ) ∈ sect > 1 ( R ) ❀ ρ : π 1 ( M ) → U ( d ) • [Barrett] ❀ A ρ ∈ Ω flat ( M, u ( d )) • o,i · u ρ, ∗ • u ρ o, 1 . . . u ρ o,d Borchers’ isometries, π ρ i u ρ o = � o,i ❀ � � � u ρ o,i u ρ, ∗ z ρ ( p ℓ ) = ℓ A ρ � P exp i o,j ij ij No suitable local primitives φ o of A ρ ❀ ! ! There is no immediate way to construct ψ int M × ρ C d • The test space should be S ( DM ⊗E ρ ), E ρ := ˆ

  13. ◦ From gauge symmetry ( G cp Lie non-Ab, G ⊆ U ( n )): ψ G : S ( DM ⊗ C n ) → B ( H ) free field ❀ F G , R G • ( π σ , z σ ) ∈ sect > 1 ( R G ), σ ∈ irr ( G ) • o,i · u σ, ∗ u σ o,i Borchers’ isometries, π σ i u σ • o = � o,i ❀ � � � o,i u σ, ∗ z σ ( p ℓ ) = ℓ A σ u σ � σ P exp i o,j g ij ij ! There is no immediate way to construct ψ G,int

  14. Conclusions and outlooks � Given A ∈ Z 1 dR ( M ), ∃ ψ int s.t. { i / ∇ + / A − m } ψ int = 0 � { κ ; A, ψ int } ↔ sect 1 ( R ) � A ρ ∈ Ω flat ( M, u ( d )) ↔ sect > 1 ( R ) ( ← π 1 ( M ) n.a.) � { σ ; A σ g } ↔ sect ( R G ) Interpretation of A ρ for π 1 ( M ) n.a. • (e.g. two shielded solenoids ⇒ π 1 ( M ) = F 2 ) • A more complete formulation should involve lgt’s • Non-flat background potential A ∈ Ω( M, R ), we should get connections as in [RRV,CRV] • Non-relativistic case, relation with [MS]

  15. References: • [BR] CMP 287 (2009) arxiv 0801.3365 • [RRV] Adv.Math. 220 (2009) arxiv 0707.0240 • [RRV’] IJM 24 (2013) arxiv 0802.1402 • [Vas] CMP 335 (2015) arxiv 1211.1812 • [BM] Baez-Muniain book • [Barrett] : Int.J. Th. Phys. 30 (1991) • [CRV] ATMP 16 (2012) arxiv 1109.4824 • [dAH] CMP 261 (2006) arxiv 0106028 • [Dimock] Trans. Am. Math. Soc. 269 (1982) • [Freed] Adv.Math. 113 (1995) arxiv 9206021 • [GLRV] RMP 13 (2001) arxiv 9906019 • [KN] Kobayashi-Nomizu book • [MS] LMP 82 (2007) arxiv 0707.3357 • [V] RMP 9 (1997) arxiv 9609004

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend