aging in the one dimensional coagulation diffusion process
play

Aging in the one-dimensional coagulation-diffusion process Xavier - PowerPoint PPT Presentation

Aging in the one-dimensional coagulation-diffusion process Xavier Durang , Jean Yves Fortin, Malte Henkel IJL, Universit e Henri Poincar e Nancy I XD, Fortin, Del Biondo, Henkel, Richert, J. Stat. Mech 2010 XD, Fortin, Henkel J. Stat. Mech


  1. Aging in the one-dimensional coagulation-diffusion process Xavier Durang , Jean Yves Fortin, Malte Henkel IJL, Universit´ e Henri Poincar´ e Nancy I XD, Fortin, Del Biondo, Henkel, Richert, J. Stat. Mech 2010 XD, Fortin, Henkel J. Stat. Mech 2011 Dresden, MPI, LAFNES11 15 juillet 2011 Xavier Durang , Jean Yves Fortin, Malte Henkel

  2. Contents 1 Introduction Ageing phenomena : from simple magnets to directed percolation Two-time observables, Fluctuation-Dissipation ratio Model 2 One-time quantities Training example (Method used) Influence of the initial conditions 3 Two-time functions Generalisation of the empty-interval method Ageing exponents 4 Fluctuation-dissipation ratio 5 Conclusion Xavier Durang , Jean Yves Fortin, Malte Henkel

  3. I.1 Ageing Struik 1978 Three defining properties of ageing : 1. observe slow relaxation after quenching PVC from melt to low T 2. creep curves depend on waiting time t e (or s ) and creep time t 3. find master curve for all ( t , t e ) − → dynamical scaling Quench Constraint Measure time 0 s t Xavier Durang , Jean Yves Fortin, Malte Henkel

  4. t = t 1 t = t 2 > t 1 magnet T < T c − → ordered cluster magnet T = T c − → correlated cluster critical contact process diffusion, A → 2 A , A → φ = ⇒ cluster dilution voter model, contact process,. . . Characteristic length scale : L ( t ) ∼ t 1 / z Xavier Durang , Jean Yves Fortin, Malte Henkel

  5. I.2 Two-time observables time-dependent order-parameter φ ( t , r ) (Directed percolation : φ =part. density) two-time correlator C ( t , s ) := � φ ( t , r ) φ ( s , r ) � − � φ ( t , r ) � � φ ( s , r ) � � R ( t , s ) := δ � φ ( t , r ) � � two-time response � δ h ( s , r ) � h =0 (Directed percolation : h ( t ) = creation of part.) t : observation time, s : waiting time Scaling regime : t ≫ s ≫ τ micro (For simple magnets) � t � t � � C ( t , s ) = s − b f C , R ( t , s ) = s − 1 − a f R s s Asymptotics : f C , R ( y ) ∼ y − λ C , R / z for y ≫ 1 λ C : autocorrelation exponent, λ R : autoresponse exponent, z : dynamical exponent, a , b : ageing exponents Xavier Durang , Jean Yves Fortin, Malte Henkel

  6. I.3 Fluctuation dissipation ratio Usually λ R = λ C The fluctuation-dissipation ratio ( fdr ) Cugliandolo, Kurchan, Parisi ’94 TR ( t , s ) � � X ( t , s ) := ∂ C ( t , s ) /∂ s X ∞ = lim t →∞ X ( t , s ) lim s →∞ Godr` eche & Luck 00 measures the distance to the equilibrium : X eq = X ( t − s ) = 1. a = b valid when systems satisfy detailed balance Contact process 1 + a = b : ⇐ = rapidity-reversal symmetry of stationary state of cp ⇒ specific property ! = ⇒ try new form of FDR ! Enss et. al. 04 Ξ( t , s ) := R ( t , s ) C ( t , s ) = f R ( t / s ) � � f C ( t / s ) , Ξ ∞ := lim t →∞ Ξ( t , s ) lim s →∞ Universality of Ξ ∞ proven to one-loop order. Baumann & Gambassi 07 Xavier Durang , Jean Yves Fortin, Malte Henkel

  7. I.4 Coagulation-diffusion process AIM : to test these scaling predictions on an exactly solvable model without detailed balance Model : One dimensional lattice of spacing a D Diffusion D Coagulation (diffusion and coagulation can occur in both directions) Space translation invariance Absence of detailed balance Absorbing phase Stationary state Xavier Durang , Jean Yves Fortin, Malte Henkel

  8. II.1 Empty interval method : training example Particle concentration : c ( t ) = Pr ( {• ; t } ) D. ben Avraham et al. 90 n empty sites E n ( t ) : time-dependent probability of having an interval of n consecutive empty sites at time t c ( t ) = E 1 ( t ) − E 0 ( t ) continuum limit ( x = na ) − → c ( t ) = − ∂ x E ( x , t ) | x =0 Equation of motion (2 D / a 2 ) ( E n − 1 − 2 E n + E n +1 ) For n > 1 ∂ t E n ( t ) = � � (2 D / a 2 ) For n = 1 ∂ t E 1 ( t ) = 1 − 2 E 1 ( t ) + E 2 ( t ) This gives the constraint : E 0 ( t ) = 1 Equation of motion in the continuum limit ( x = na ) ∂ t E ( x , t ) = 2 D ∂ xx E ( x , t ) , and E (0 , t ) = 1 . Xavier Durang , Jean Yves Fortin, Malte Henkel

  9. II.2 Solution by analytical continuation Assume that the differential equation is valid for n ≤ 0 � ∞ dx ′ − 1 � ℓ 02 ( x − x ′ ) 2 � E ( x ′ , 0) . √ πℓ 0 E ( x , t ) = exp −∞ √ where ℓ 0 is the scaling length ℓ 0 := 8 Dt . Take into account the constraint : E 0 ( t ) = 1. For n = 0 (2 D / a 2 ) ( E − 1 − 2 E 0 + E 1 ) = 0 ∂ t E 0 ( t ) = E − 1 ( t ) = 2 E 0 ( t ) − E 1 ( t ) = 2 − E 1 ( t ) Redefine the meaning of E ( n , 0) for negative n such that E − n ( t ) = 2 − E n ( t ) E ( − x , t ) = 2 − E ( x , t ) and Xavier Durang , Jean Yves Fortin, Malte Henkel

  10. II.3 General expression for the particle concentration One-empty-interval probability E ( x , t ) = erfc ( x /ℓ 0 ) � + ∞ dx ′ 1 1 ℓ 02 ( x − x ′ ) 2 ℓ 02 ( x + x ′ ) 2 � − − � E ( x ′ , 0) + √ πℓ 0 − e . e 0 Hierarchy Particle concentration � ∞ 2 � dxE ( x ℓ 0 , 0)2 xe − x 2 � √ πℓ 0 1 − c ( t ) = 0 2 + o(1 /ℓ 0 ) ∼ t − 1 / 2 c ( t ) = √ πℓ 0 Independent of initial condition → very well known result Xavier Durang , Jean Yves Fortin, Malte Henkel

  11. II. 4 One-time Correlation funtion Connected correlator : C ( d , t ) = Pr ( • d • , t ) − Pr ( • , t ) Pr ( • , t ) Two-interval probability n d m E n 1 , n 2 , d ( t ) : time-dependent probability of having two intervals of n 1 and n 2 consecutive empty sites distant from d at time t Continuum limit ( x = n 1 a , y = n 2 a , z = da ) C ( z , t ) = ∂ 2 � xy E ( x , y , z , t ) x =0 , y =0 − ∂ x E ( x , t ) | x =0 ∂ y E ( y , t ) | y =0 � Xavier Durang , Jean Yves Fortin, Malte Henkel

  12. II.5 One-time correlation function Equation of motion : (only for x , y and z positive) � � �� ∂ 2 x + ∂ 2 y + ∂ 2 ∂ t E ( x , y , z , t ) = 2 D z − ∂ x ∂ z + ∂ y ∂ z E ( x , y , z , t ) with compatibility conditions ( ex : E ( x , 0 , d , t ) = E ( x , t ) ). Decomposition of the solution as a sum of three terms : E ( x , y , z , t ) = E (0) ( x , y , z , t ) + E (1) ( x , y , z , t ) + E (2) ( x , y , z , t ) E (0) ( x , y , z , t ) is independent of the initial conditions 1 E (1) ( x , y , z , t ) depends on the initial one-interval probability 2 E (2) ( x , y , z , t ) depends on the initial two-intervals probability 3 → System initially filled with particles � x � y � � E ( x , y , z ; t ) = E (0) ( x , y , z , t ) = erfc erfc ℓ 0 ℓ 0 � z � � x + y + z � � x + z � � y + z � + erfc − erfc erfc erfc ℓ 0 ℓ 0 ℓ 0 ℓ 0 Xavier Durang , Jean Yves Fortin, Malte Henkel

  13. II.6 One-time correlation function Correlation function C ( z , t ) = ∂ 2 � xy E ( x , y , z , t ) x =0 , y =0 − ∂ x E ( x , t ) | x =0 ∂ y E ( y , t ) | y =0 � In the case of an initially completely filled system, E ( x , 0) = 0 and √ E ( x , y , z , 0) = 0, we obtain dynamical scaling with ℓ 0 = 8 Dt . Connected correlator � 2 � 2 √ πℓ 0 C ( z , t ) = f ( z /ℓ 0 ) − e − 2 y 2 + √ π ye − y 2 erfc ( y ) with f ( y ) = D. ben Avraham, 1998 exact in asymptotic regime for all initial conditions. Xavier Durang , Jean Yves Fortin, Malte Henkel

  14. II.7 Correction to the leading behaviour Time evolution of C ( z ; t ) for an initial one-interval probability E ( x ; 0) = exp ( − x ) and z = 1 / 2 (0) (z,t) C 0,1 (0) (z,t)+C (1) (z,t) C (0) (z,t)+C (1) (z,t)+C (2) (z,t) C -C(z=1/2,t) 0,01 10 100 t Full black solid line : leading contribution Algebraic behaviour when t large | C ( z , t ) | ∼ t − 1 . Red dashed line includes the effect of one-interval contribution Dashed-dotted line includes all contributions � ≫ � ≫ � C (0) (1 / 2 , t ) � C (1) (1 / 2 , t ) � C (2) (1 / 2 , t ) � � � � � � Hierarchy : � Xavier Durang , Jean Yves Fortin, Malte Henkel

  15. III.1 Two-times functions We want to evaluate connected correlation C ( z ; t , s ) and response R ( z ; t , s ) functions ( t ≥ s ) using the interval probability method In the discrete space, their definition are C ( d ; t , s ) = Pr ( {• ; t } d {• ; s } ) − Pr ( • ; t ) Pr ( • ; s ) If we add a particle at a given site at time s : R ( d ; t , s ) = Pr ( {• ; t } d {• ; s } ) − Pr ( • ; t ) δ � φ ( t , r ) � � � = � δ h ( s , r ) � h =0 φ = part. density and h ( t ) = creation of part. d n Mixed-interval probability F ( n , d ; t , s ) = Pr ( { n ; t } d {• ; s } ) Xavier Durang , Jean Yves Fortin, Malte Henkel

  16. III.2 Mixed-interval probability Two-time correlation C ( d ; t , s ) = − ∂ x F ( x , z ; t , s ) | x =0 ∼ 1 / L 2 C ( z ; t , s ) = lim a a → 0 Two-time response, G has the same definition than F R ( d ; t , s ) = − ∂ x G ( x , z ; t , s ) | x =0 ∼ 1 / L R ( z ; t , s ) = lim a a → 0 Initial conditions at t = s 1 F ( x , z ; s , s ) = lim aF ( n , d ; s , s ) = − ∂ y E ( x , y , z ; s ) | y =0 a → 0 G ( x , z ; s , s ) = lim a → 0 G ( n , d ; s , s ) = E ( x ; s ) F and G are different because of their initial conditions at t = s Xavier Durang , Jean Yves Fortin, Malte Henkel

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend