advisors
play

Advisors: Prof. Dr. Ir. Gede Wibawa, M.Eng Ir. Winarsih - PowerPoint PPT Presentation

Final Project Seminar VAPOR-LIQUID EQUILIBRIUM MEASUREMENT FOR BINARY SYSTEMS OF 1-BUTANOL + GLISEROL AND 2-METHYL-1- PROPANOL + GLISEROL AT DIFFERENT TEMPERATURES Presented by: Ajeng Puspitasari Yudiputri 2310 100 055 Eviana Dewi


  1. Final Project Seminar VAPOR-LIQUID EQUILIBRIUM MEASUREMENT FOR BINARY SYSTEMS OF 1-BUTANOL + GLISEROL AND 2-METHYL-1- PROPANOL + GLISEROL AT DIFFERENT TEMPERATURES Presented by: Ajeng Puspitasari Yudiputri 2310 100 055 Eviana Dewi Setiawati 2310 100 125 Advisors: Prof. Dr. Ir. Gede Wibawa, M.Eng Ir. Winarsih THERMODYNAMICS LABORATORY Chemical Engineering Department - ITS

  2. INTRODUCTION

  3. Introduction 1 2 Energy Solution Demand renewable alternative 25% of the domestic fuels diesel obtained from imported ed BIODIESEL 3 4 Transesterification Sol silika dari water glass Optimization merupakan alternatif Process of Separation pengganti silika aerogel. process of separati ation on Equilibrium Data for and purificat ication ion from each components in impurities and Transesterification byproducts Products THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  4. RELATED STUDY

  5. Related Study of Vapor Liquid Equilibrium Measurements for Binary System of Alcohols+Glycerol 2. Coelho et al. (2011) ) 1. Shoujanya et al. (2009) Research of vapour liquid equilibrium of Research of vapour-liquid binary system methanol+glycerol at equilibrium for binary system difference pressure using the ethanol+glycerol on the pressure ebulliometer sweitoslawsky using the othmer-type ebulliometerr at 14 Kpa pressure range up to 96 Kpa 3. Shimoyama et al. (2009) 4. Zaoui-Djelloul-Daouadji et al. (2013) Measurement of the vapour-liquid Research of vapor-liquid equilibrium and binary system of equilibrium and excess Gibbs free methanol+gliserol and energy function for binary system ethanol+glycerol using flow method ethanol + glycerol at different in range temperature 493-573 K temperatures THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  6. Related Study of Vapor Liquid Equilibrium Measurements for Binary System of Alcohols+Glycerol 5. Oliveira et al. (2009) 6. Wiguna dan Irwansyah (2012) Research of liquid-vapour equilibrium Research of vapor-liquid for binary system water+glycerol and equilibrium of binary system 1- ( 1-propanol, 2-propanol, 1- propanol + glycerol at isothermal buthanol ) +glycerol using Cubic-Plus conditions Association (CPA) Equation of state method 8. Wardani dan Ellena (2013) 7. Akbarina dan Ruslim (2012) Research of vapor-liquid Research of vapor-liquid equilibrium (VLE) equilibrium (VLE) of the binary in the binary system 2- systems 2-butanol + glycerol at a propanol+glycerol at a temperature of temperature range of 313.15 K to 323.15 K, 333.15K, 343.15K 333.15K THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  7. Research Hypothesis VAPOR-LIQUID EQUILIBRIUM MEASUREMENT FOR BINARY SYSTEMS OF 1-BUTANOL + GLISEROL AND 2-METHYL-1-PROPANOL + GLISEROL THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  8. OBJECTIVES and ADVANTAGES

  9. Objectives and Advantages Objectives: To obtain the vapor-liquid equilibrium data for binary systems of 1- buthanol +glycerol and 2-methyl-1-propanol+glycerol at different temperatures and correlated the experimental data with Wilson, NRTL, and UNIQUAC models Advantages: As a base reference in distillation process design to enhance the efficiency of alcohol-glycerol separation and as a base reference in an advancement development of solution theory in biodiesel synthesis THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  10. Experimental Materials Component Molecular formula Purity 1-butanol C 4 H 10 O 0.995 2-metil-1-propanol C 4 H 10 O 0.990 Gliserol C 3 H 8 O 3 0.995 All materials were purchased from Merck , Germany and used without additional purification. THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  11. METHODS

  12. Apparatus 1. Ebulliometer Cell 2. Thermocouple ( Four-wire Platinum Resistance Temperature Detector ) 3. Condenser 4. Vacuum Pump (Value VG 140) 5. Mercury manometer with a precision of ± 1.0 mmHg 6. Heating System (Controller (Shimaden SR64) with a precision of ± 1/3% (from Displayed 7 Value ), Temperature Recorder (YOKOGAWA 7563) with a precision of ± 0.03 K) 7. Magnetic Stirer 8 8. Thermolyne 7200 Stirrer THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  13. Experimental Procedures open close OFF ON Solution with a certain fraction Oktavian et al. (2013) THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  14. RESULTS AND DISCUSSION

  15. Reliability of Experimental Apparatus Vapor pressures data of 1-butanol: (o) experimental; and ( ) calculation. Komponen A g B h C i 1-Butanol (C 4 H 10 O) 4.6493 1395.14 182.739 g,h,i taken from Poling et al. (2001) AAD 0.1 % THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  16. Reliability of Experimental Apparatus AAD 0.2 % Komponen A j B k C l 2-Metil-1-Propanol 4.34504 1190.38 166.67 (C 4 H 10 O) j,k,l taken from Poling et al. (2001) Vapor pressures data of 2-metil-1-propanol: (o) experimental; and ( ) calculation. THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  17. Binary System of 1-Butanol(1)+Glycerol(2) VLE phase (P-T) diagram for binary system of 1-butanol(1)+glycerol(2) at x 1 = 0.7986 VLE phase (P-T) diagram for binary system of 1-butanol(1)+glycerol(2) at x 1 = 0.2011 Wilson (1964) THERMODYNAMICS Renon dan Prauznitz (1968) LABORATORY Abrams dan Prausnitz (1975) Chemical Engineering Department-ITS

  18. Binary System of 1-Butanol(1)+Glycerol(2) The deviations from Raoult's Law is 31.2% VLE phase (P-x 1 -y 1 ) diagram for binary system of 1-butanol(1)+glycerol(2) at 65 o C VLE phase (P-x 1 -y 1 ) diagram for binary system of 1-butanol(1)+glycerol(2) at 60 o C Wilson (1964) THERMODYNAMICS Renon dan Prauznitz (1968) LABORATORY Abrams dan Prausnitz (1975) Chemical Engineering Department-ITS

  19. Fitted Binary Interaction Parameters using Activity Coefficient Models of 1-Butanol(1)+Glycerol(2) System AAD a Model Parameters 784.032 Wilson b a 12 2.8% 1048.40 a 21 721.805 NRTL c b 12 726.573 3.4% b 21 α 0.30 ∆ u 12 99.9234 UNIQUAC d 3.5% ∆ u 21 172.644 THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  20. Binary System of 2-Metil-1-Propanol(1)+ Glycerol(2) VLE phase (P-T) diagram for binary system of 2-metil-1-propanol (1)+glycerol(2) at x 1 = 0. 7955 VLE phase (P-T) diagram for binary system of 2-metil- 1-propanol (1)+glycerol(2) at x 1 = 0. 3020 Wilson (1964) THERMODYNAMICS Renon dan Prauznitz (1968) LABORATORY Abrams dan Prausnitz (1975) Chemical Engineering Department-ITS

  21. Binary System of 2-Metil-1-Propanol(1)+ Glycerol(2) VLE phase (P-x 1 -y 1 ) diagram for binary system of 2-metil-1-propanol(1)+glycerol(2) at 55 o C VLE phase (P-x 1 -y 1 ) diagram for binary system of 2-metil-1-propanol(1)+glycerol(2) at 50 o C The deviations from Raoult's Law is 30.2% Wilson (1964) THERMODYNAMICS Renon dan Prauznitz (1968) LABORATORY Abrams dan Prausnitz (1975) Chemical Engineering Department-ITS

  22. Fitted Binary Interaction Parameters using Activity Coefficient Models of 2-Metil-1-Propanol(1)+Glycerol(2) System AAD a Model Parameters 773.889 Wilson b a 12 5.0% 1061.00 a 21 1035.74 NRTL c b 12 335.525 4.3% b 21 α 0.30 ∆ u 12 132.701 UNIQUAC d 4.4% ∆ u 21 131.145 THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  23. Konstanta Henry, untuk Senyawa 1-Butanol pada Suhu 45 o C Calculation of Henry’s Constants H = 30.29 i Henry ’s Law  ˆ  f    lim H i   (4-9) i  0 x   x i i Henry’s Law constants of 1 -butanol obtained from extrapolation at 45 o C THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  24. Calculation of Henry’s Constants Van't Hoff Equation :  1  b   ln a   (4-10)   H T Plot ln(1/H) vs. (T) for 1-butanol at Different Temperatures Takishima et al.(1964) THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  25. Konstanta Henry, untuk Senyawa 1-Butanol pada Suhu 45 o C Calculation of Henry’s Constants H = 33.39 i Plot ln(1/H) vs. (T) for 2-metil-1-propanol at Different Temperatures Henry’s Law constants of 2 -metil-1-propanol obtained from extrapolation at 45 o C THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  26. Parameters of the van’t Hoff equation (Eq. (4-10)) for 1-Buthanol and 2-Metil-1-Propanol Table bla bla bla Equation p a b (AAD)* 1-Butanol Eq. (4-10) -18.67 4.799 11.1% 2-Metil-1-Propanol Eq. (4-10) -8.177 1.475 3.0%  Van't Hoff Equation : 1 H H    n ' exp  * Van tHoff eriment 100 % AAD  1  1 b i n H   ln exp eriment a   (4-10)   H T THERMODYNAMICS LABORATORY Chemical Engineering Department-ITS

  27. CONCLUSION

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend