adding monotonic counters to automata and transition
play

Adding Monotonic Counters to Automata and Transition Graphs Wong - PowerPoint PPT Presentation

9th International Conference Developments in Language Theory Palermo, 48 July 2005 Adding Monotonic Counters to Automata and Transition Graphs Wong Karianto karianto@informatik.rwth-aachen.de Lehrstuhl f ur Informatik VII Motivations:


  1. 9th International Conference Developments in Language Theory Palermo, 4–8 July 2005 Adding Monotonic Counters to Automata and Transition Graphs Wong Karianto karianto@informatik.rwth-aachen.de Lehrstuhl f¨ ur Informatik VII

  2. Motivations: Parikh Automata (Klaedtke & Rueß, ICALP 2003) Idea: how to recognize a language with arithmetical properties , such as L abc := { a k b k c k | k ≥ 1 } ? RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 2

  3. Motivations: Parikh Automata (Klaedtke & Rueß, ICALP 2003) Idea: how to recognize a language with arithmetical properties , such as L abc := { a k b k c k | k ≥ 1 } ? � Use a finite automaton recognizing a + b + c + . � Assign a vector to each input symbol. � Put a Presburger constraint on the summed vector ( x, y, z ) : x = y = z . ( a, (1 , 0 , 0)) ( b, (0 , 1 , 0)) ( c, (0 , 0 , 1)) ( a, (1 , 0 , 0)) ( b, (0 , 1 , 0)) ( c, (0 , 0 , 1)) RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 2

  4. Outline 1. Parikh automata � Semi-linear sets and Parikh’s theorem � Parikh automata and the Chomsky hierarchy 2. Monotonic-counter extensions of (infinite) graphs � Some classes of infinite graphs � Monotonic-counter extensions 3. Reachability problem RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 3

  5. Part 1 Parikh Automata RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 4

  6. Semi-Linear Sets and Parikh’s Theorem A ⊆ N n linear : A = { ¯ x 0 + k 1 ¯ x 1 + . . . + k m ¯ x m | k 1 , . . . , k m ∈ N } x m ∈ N n for some ¯ x 0 , ¯ x 1 , . . . , ¯ Semi-linear set : finite union of linear sets. Example: B := { ( x 1 , x 2 , x 3 ) ∈ N 3 | x 1 < x 2 < x 3 } is linear: { (0 , 1 , 2) + k 1 (0 , 0 , 1) + k 2 (0 , 1 , 1) + k 3 (1 , 1 , 1) | k 1 , k 2 , k 3 ∈ N } . RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 5

  7. Semi-Linear Sets and Parikh’s Theorem A ⊆ N n linear : A = { ¯ x 0 + k 1 ¯ x 1 + . . . + k m ¯ x m | k 1 , . . . , k m ∈ N } x m ∈ N n for some ¯ x 0 , ¯ x 1 , . . . , ¯ Semi-linear set : finite union of linear sets. Example: B := { ( x 1 , x 2 , x 3 ) ∈ N 3 | x 1 < x 2 < x 3 } is linear: { (0 , 1 , 2) + k 1 (0 , 0 , 1) + k 2 (0 , 1 , 1) + k 3 (1 , 1 , 1) | k 1 , k 2 , k 3 ∈ N } . Properties of semi-linear sets: � effective closure under Boolean operations [Ginsburg & Spanier] � equivalence to Presburger-definable sets [Ginsburg & Spanier] RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 5

  8. Semi-Linear Sets and Parikh’s Theorem A ⊆ N n linear : A = { ¯ x 0 + k 1 ¯ x 1 + . . . + k m ¯ x m | k 1 , . . . , k m ∈ N } x m ∈ N n for some ¯ x 0 , ¯ x 1 , . . . , ¯ Semi-linear set : finite union of linear sets. Example: B := { ( x 1 , x 2 , x 3 ) ∈ N 3 | x 1 < x 2 < x 3 } is linear: { (0 , 1 , 2) + k 1 (0 , 0 , 1) + k 2 (0 , 1 , 1) + k 3 (1 , 1 , 1) | k 1 , k 2 , k 3 ∈ N } . Properties of semi-linear sets: � effective closure under Boolean operations [Ginsburg & Spanier] � equivalence to Presburger-definable sets [Ginsburg & Spanier] Parikh’s theorem : The Parikh image of any context-free language is effectively semi-linear. RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 5

  9. Parikh Automata ( a, (1 , 0 , 0)) ( b, (0 , 1 , 0)) ( c, (0 , 0 , 1)) ( a, (1 , 0 , 0)) ( b, (0 , 1 , 0)) ( c, (0 , 0 , 1)) Parikh finite automaton ( Parikh-FA ) ( A , C ) of dimension n ≥ 1 over Σ : � finite automaton A over Σ × D ( D ⊆ N n finite, nonempty) � semi-linear set C ⊆ N n RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 6

  10. Parikh Automata ( a, (1 , 0 , 0)) ( b, (0 , 1 , 0)) ( c, (0 , 0 , 1)) ( a, (1 , 0 , 0)) ( b, (0 , 1 , 0)) ( c, (0 , 0 , 1)) Parikh finite automaton ( Parikh-FA ) ( A , C ) of dimension n ≥ 1 over Σ : � finite automaton A over Σ × D ( D ⊆ N n finite, nonempty) � semi-linear set C ⊆ N n Word u := a 1 · · · a m is accepted iff � v := ( a 1 , ¯ d 1 ) · · · ( a m , ¯ d m ) ∈ L ( A ) exists, for some ¯ d 1 , . . . , ¯ d m ∈ D , � and Φ( v ) := ¯ d 1 + · · · + ¯ d m ∈ C . ❆ ❑ ❆ extended Parikh mapping Φ: (Σ × D ) ∗ → N n RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 6

  11. Emptiness Problem Lemma (Klaedtke & Rueß): If the Parikh image of L ⊆ (Σ × D ) ∗ is effectively semi-linear, then also its extended Parikh image Φ( L ) . Theorem (Klaedtke & Rueß): The emptiness problem for Parikh-FA’s is decidable. Proof idea. L ( A , C ) � = ∅ Φ( L ( A )) ∩ C � = ∅ iff � �� � – Both sets are semi-linear. – Intersection of semi-linear sets is effectively semi-linear. = ⇒ (Non-)Emptiness is decidable. � RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 7

  12. Parikh Automata and the Chomsky Hierarchy Automata of the Chomsky hierarchy as the automaton component A : Parikh-TM Turing machines linear-bounded automata pushdown automata finite automata RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 8

  13. Parikh Automata and the Chomsky Hierarchy Automata of the Chomsky hierarchy as the automaton component A : Parikh-TM Turing machines Parikh-LBA linear-bounded automata Parikh-PDA pushdown automata Parikh-FA finite automata RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 8

  14. Parikh Automata and the Chomsky Hierarchy Automata of the Chomsky hierarchy as the automaton component A : Parikh-TM Turing machines 1. { a k b k c k | k ≥ 1 } Parikh-LBA 2. { ww R | w ∈ { a, b } ∗ } linear-bounded automata (3) 3. semi-linearity of Parikh-PDA Parikh-PDA (1) recognizable languages pushdown automata (2) Parikh-FA (1) finite automata RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 8

  15. Part 2 Monotonic-Counter Extensions of (Infinite) Graphs RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 9

  16. Monotonic-Counter Graphs Σ -labeled graph G := ( V, ( E a ) a ∈ Σ ) a · · · • a b · · · · · · · · · RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 10

  17. Monotonic-Counter Graphs (Σ × D ) -labeled graph G := ( V, ( E ( a, ¯ d ) ) ( a, ¯ d ) ∈ Σ × D ) ( D ⊆ N n finite, nonempty) a · · · • ( a, (1 , 0)) ( b, (0 , 1)) · · · · · · · · · RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 10

  18. Monotonic-Counter Graphs Monotonic-counter extension of G : Σ -labeled graph � G := ( � V , ( � (Σ × D ) -labeled graph E a ) a ∈ Σ ) with V := V × N n and (( α, ¯ � y )) ∈ � G := ( V, ( E ( a, ¯ d ) ) ( a, ¯ d ) ∈ Σ × D ) x ) , ( β, ¯ E a iff � ( α, β ) ∈ E ( a, ¯ d ) and ( D ⊆ N n finite, nonempty) x + ¯ d , for some ¯ y = ¯ ¯ d ∈ D . a a a (0 , 0) (1 , 0) (2 , 0) · · · • b b b a a a ( a, (1 , 0)) ( b, (0 , 1)) (0 , 1) (1 , 1) (2 , 1) · · · b b b a a a (0 , 2) (1 , 2) (2 , 2) · · · b b b · · · · · · · · · RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 10

  19. Some Classes of Infinite Graphs with Finite Representations Vertices: regular sets over alphabet Γ Edges: automaton-definable relations over words, e.g.: � pushdown graphs [Muller & Schupp]: transitions of ε -free pushdown automata � prefix-recognizable graphs [Caucal]: generalized prefix rewriting rules � synchronized rational graphs or automatic graphs [Frougny & Sakarovitch, Blumensath & Gr¨ adel]: synchronized rational relations � rational graphs [Morvan]: rational relations RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 11

  20. Hierarchy of Graph Classes rational graphs synchronized rational graphs prefix-recognizable graphs pushdown graphs finite graphs RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 12

  21. Hierarchy of Graph Classes R-MC rational graphs SR-MC synchronized rational graphs PR-MC prefix-recognizable graphs PD-MC pushdown graphs F-MC finite graphs RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 12

  22. Hierarchy of Graph Classes R-MC rational graphs SR-MC 1. infinite two-dimensional grid synchronized rational graphs 2. decidability of the reachability (2) problem PR-MC (1) 3. graphs with vertices of prefix-recognizable graphs (3) unbounded degree 4. graphs with repetition-free PD-MC (1) cycles of unbounded length pushdown graphs (4) F-MC (1) finite graphs RWTH Aachen – Wong Karianto Adding Monotonic Counters to Automata and Transition Graphs – p. 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend