adaptively biased molecular dynamics
play

Adaptively Biased Molecular Dynamics Volodymyr Babin, Christopher - PowerPoint PPT Presentation

Adaptively Biased Molecular Dynamics Volodymyr Babin, Christopher Roland and Celeste Sagui Department of Physics, NC State University, Raleigh, NC 27695-8202 1 The Talk Outline: Problem statement Metadynamics (+ Applications)


  1. Adaptively Biased Molecular Dynamics Volodymyr Babin, Christopher Roland and Celeste Sagui Department of Physics, NC State University, Raleigh, NC 27695-8202

  2. 1 The Talk Outline: • Problem statement • Metadynamics (+ Applications) • ABMD (+ Applications)

  3. 2 Problem Statement: • Collective Variable σ : R 3 N �→ Q • Its probability distribution � � p ( ξ ) = δ [ ξ − σ ( r 1 ,..., r N )] • Corresponding Free Energy (logdensity of ξ ) f ( ξ ) = − k B T ln p ( ξ ) , ξ ∈ Q

  4. 3 The Free Energy f ( ξ ) : • Describes the relative stability of different states. • Provides useful insights into the transitions between these states.

  5. 4 An Example: Ace-(Gly) 2 -Pro-(Gly) 3 -Nme

  6. 5 Long-Lived Conformations: Globule β -turn

  7. 6 Collective Variable: (radius of gyration) m a � � 2 ∑ � R g = r a − R Σ M Σ a m a R Σ = ∑ r a , M Σ = ∑ m a M Σ a a

  8. 7 Why the R g ? • It provides a sensible description of the conformations in terms of just one number.

  9. 8 The Conformations: R g ≈ 3 . 6 ˚ A R g ≈ 4 . 4 ˚ A

  10. 9 The Probability Density: T = 300 K Canonical Ensemble p ( r 1 ,..., r N ) ∝ − 1 � � k B T E ( r 1 ,..., r N ) exp 3 3.5 4 4.5 5 R g (˚ A)

  11. 10 Molecular Dynamics 6 5 T = 300 K A) R g (˚ 4 3 0 200 400 600 800 1000 MD time (ns)

  12. 11 The Problems: • MD trajectory rarely jumps through the barriers (i.e., the MD is bad for sampling from the canonical dis- tribution; this can be “cured” by using, e.g., parallel tempering ). • MD trajectory is trapped near the free energy minima (canonical ensemble).

  13. 12 The Free Energy 0 -5 f ( R g ) (kcal/mol) T = 300 K -10 ( k B T ≈ 0 . 6 kcal/mol) -15 -20 ≈ 5 . 5 k B T -25 -30 3.5 4 4.5 5 5.5 6 6.5 R g (˚ A)

  14. 13 “Classical” Remedies: • Better ways of sampling from the canonical distribution (replica exchange). • Sampling from a biased distribution with the bias that can be “undone” afterwards (umbrella sampling).

  15. 14 Non-Equilibrium Methods • Local Elevation (MD context) T. H UBER , A. E. T ORDA , AND W. F. VAN G UNSTEREN , Local elevation: a method for improving the searching properties of molecular dynamics simulation , J. Comput. Aided. Mol. Des., 8 (1994), pp. 695–708. • Wang-Landau (MC context) F. W ANG AND D. P. L ANDAU , Efficient, multiple-range random walk algorithm to calculate the density of states , Phys. Rev. Lett., 86 (2001), pp. 2050–2053.

  16. 15 Non-Equilibrium Methods • Adaptive Force Bias E. D ARVE AND A. P OHORILLE , Calculating free energies using average force , J. Chem. Phys., 115 (2001), pp. 9169–9183. J. H´ ENIN AND C. C HIPOT , Overcoming free energy barriers using uncon- strained molecular dynamics simulations. , J. Chem. Phys., 121 (2004), pp. 2904–2914. • Metadynamics M. I ANNUZZI , A. L AIO , AND M. P ARRINELLO , Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynam- ics , Phys. Rev. Lett., 90 (2003), pp. 238302–1.

  17. 16 Ingredients of a Non-Equilibrium Method: • Sampling Device (typically Molecular Dynamics or Replica-Exchange Molec- ular Dynamics). and • Non-stationary Biasing potential.

  18. 17 Evolving Biasing Potential: t = 0 t = ∞ – biasing potential – “flattened” free-energy

  19. 18 Metadynamics References A. L AIO AND M. P ARRINELLO , Escaping free-energy minima , Proc. Natl. Acad. Sci., 99 (2002), pp. 12562– 12566. M. I ANNUZZI , A. L AIO , AND M. P ARRINELLO , Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynam- ics , Phys. Rev. Lett., 90 (2003), pp. 238302–1.

  20. 19 Metadynamics Equations = − ∂ � � M ¨ ξ + K ξ − σ [ r 1 ,..., r N ] ∂ξ V h ( ξ , t ) � ∂ � ξ − σ [ r 1 ,..., r N ] σ [ r 1 ,..., r N ] = F a [ r 1 ,..., r N ] m a ¨ r a − K ∂ r a ξ – additional dynamical variable harmonically coupled to the collective variable ( σ [ r 1 ,..., r N ] ) V h ( ξ , t ) – the “hills” potential

  21. 20 � � M ¨ ξ + K ξ − σ [ r 1 ,..., r N ] = 0 If the dynamics of ξ is much slower than the dynamics of r a and the harmonic coupling ( K ) is strong enough, the motion of ξ is driven by the free energy gradient: − K � 2 ( ξ − σ [ r 1 ,..., r N ]) 2 � δ ( ξ − σ [ r 1 ,..., r N ]) ≈ exp t + T ∂ ∂ξ f ( ξ ) ∝ 1 � d τ ( ξ − σ [ r 1 ( τ ) ,..., r N ( τ )]) T t

  22. 21 “Umbrella” Potential V h ( ξ , t ) t = 0 t = ∞ the metadynamics’ “hills” potential � � V h ( ξ , t ) = ∑ ξ − ξ ( τ ) G is a sum of tiny bumps placed along τ < t the ξ ( t ) trajectory

  23. 22 As-Is Metadynamics is O ( t 2 ) : • The number of terms (bumps) in V h ( ξ , t ) (the “hills” potential) at time t is proportional to t . • V h ( ξ , t ) must be computed at every MD step.

  24. 23 Metadynamics / Applications E. A SCIUTTO AND C. S AGUI , Exploring Intramolecular Reactions in Complex Systems with Metadynamics: The Case of the Malonate An- ions , J. Phys. Chem. A, 109 (2005), pp. 7682–7687. J. G. L EE , E. A SCIUTTO , V. B ABIN , C. S AGUI , T. A. D ARDEN AND C. R OLAND , Deprotonation of Solvated Formic Acid: Car-Parrinello and Metadynamics Simulations , J. Phys. Chem. B, 110 (2006) pp. 2325– 2331.

  25. 24 V. B ABIN , C. R OLAND , T. A. D ARDEN AND C. S AGUI , The free energy landscape of small peptides as obtained from metadynamics with umbrella sampling corrections , J. Chem. Phys., 125 (2006), pp. 204909. • Metadynamics for AMBER (classical MD: significant entropy contributions require long runs). • Fast implementation using kd -trees for the “hills” potential ıve O ( t 2 ) , but still not fast enough). (faster than na¨ • An equilibrium follow-up run to assess and improve the “raw” metadynamics free energy.

  26. 25 The Hills Potential W � A � � ξ ( 0 ) � �� V h ( ξ , t ) = ∑ R ( ξ n , s n ) G ( 0 ) A n G W n � n � � 2 ξ α − ξ ( 0 ) � � � � α � ξ ( 0 ) , s ) = R c = 2 W � ∑ R ( ξ � s α α � � 2 R 2 � � � − 1 − 1 2 R 2 exp + P ( R ) exp , R < R c c G ( R ) = 0 , R ≥ R c � � � � P ( R ) = 1 1 + 1 c − 1 − 1 1 + 1 2 R 2 2 R 2 4 R 2 2 R 2 4 R 2 − 1 c c

  27. 26 How to check the accuracy ?

  28. 27 Corrective Follow-Up: 1. Get the (equilibrium) biased probability density: E B ( r 1 ,..., r N ) = E ( r 1 ,..., r N )+ V h [ σ ( r 1 ,..., r N )] � � p B ( ξ ) = δ [ ξ − σ ( r 1 ,..., r N )] B 2. Use it to correct the free energy: ∆ f ( ξ ) = − k B T ln p B ( ξ ) f ( ξ ) = − V h ( ξ )+ ∆ f ( ξ )

  29. 28 Ace-(Gly) 2 -Pro-(Gly) 3 -Nme (using R g as the collective variable)

  30. 29 Metadynamics Trajectory: 7 6 A) ξ ( t ) (˚ 5 4 3 0 50 100 150 MD time (ns)

  31. 30 “Raw” Metadynamics: 0 -10 1 × 10 3 3 × 10 3 − V h (kcal/mol) -20 2 × 10 3 4 × 10 3 -30 5 × 10 3 -40 -50 -60 7 3 4 5 6 R g (˚ A)

  32. 31 “Raw” Metadynamics Error: 8 − k B T ln p B (kcal/mol) 7 6 5 4 3 2 7 3 4 5 6 R g (˚ A)

  33. 32 “Raw” + “Correction”: 10 -42 0 -44 f ( R g ) (kcal/mol) -10 -46 -20 -48 3.5 3.75 4 4.25 4.5 -30 -40 -50 7 3 4 5 6 R g (˚ A)

  34. 33 The “raw” error of ≈ 5 k B T is unacceptable (it is comparable with the barrier height)! The equilibrium follow-up is therefore cru- cial to get accurate results.

  35. 34 Tri-Alanine

  36. 35 “Raw”: -0.5 -1.5 -2.5 -3.5 -4.5 -5.5 -6.5 -7.5 -8.5 -9.5 -10.5 -11.5 -12.5 -13.5 -14.5 +140 +60 ψ -60 -140 ϕ ϕ -140 -60 +60 +140 -140 -60 +60 +140 implicit explicit

  37. 36 “Raw” + “Correction”: -0.5 -1.5 -2.5 -3.5 -4.5 -5.5 -6.5 -7.5 -8.5 -9.5 -10.5 -11.5 -12.5 -13.5 -14.5 +140 +60 ψ -60 -140 ϕ ϕ -140 -60 +60 +140 -140 -60 +60 +140 implicit explicit

  38. 37 Can we do better ?

  39. 38 Vectors of Improvement: • Different biasing strategies (e.g., smoother in both time and in Q biasing potential). • Better “sampling devices” (e.g., replica ex- change).

  40. 39 V. B ABIN , C. R OLAND , AND C. S AGUI , Adaptively biased molecular dynamics for free energy calculations , J. Chem. Phys., 128 (2008), p. 134101. d 2 r a d t 2 = F a − ∂ � � t | σ ( r 1 ,..., r N ) m a U ∂ r a ∂ U ( t | ξ ) = k B T � � ξ − σ ( r 1 ,..., r N ) G ∂ t τ F T. L ELI ` EVRE , M. R OUSSET , AND G. S TOLTZ , Computation of free energy pro- files with parallel adaptive dynamics , J. Chem. Phys., 126 (2007), p. 134111.

  41. 40 Discretization in Q U ( t | ξ ) = ∑ U m ( t ) B ( ξ / ∆ ξ − m ) m ∈ Z D

  42. 41 Discretization in Time U m ( t + ∆ t ) = U m ( t )+ ∆ tk B T � � σ ( t ) / ∆ ξ − m G τ F  � 2 � 1 − ξ 2 � G ( ξ ) = 48 , − 2 ≤ ξ ≤ 2  4 41 0 , otherwise 

  43. 42 Advantages of the ABMD • It is fast: goes as O ( t ) since the numerical cost of the U ( t | ξ ) does not depend on time t (it is O ( 1 ) ). • It is memory efficient (if sparse arrays are used for the U m ( t ) ). • It is convenient (only two parameters: ∆ ξ and τ F ).

  44. 43 Ace-(Gly) 2 -Pro-(Gly) 3 -Nme (using R g as the collective variable)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend