adaptive wavelet collocation for elasticity
play

Adaptive Wavelet Collocation for Elasticity Lu s Manuel Castro - PDF document

Adaptive Wavelet Collocation for Elasticity Lu s Manuel Castro Silvia Bertoluzza Instituto Superior T ecnico, Lisbon Istituto di Analisi Numerica del CNR, Pavia luis@civil.ist.utl.pt http://www.civil.ist.utl.pt/luis


  1. Adaptive Wavelet Collocation for Elasticity Lu´ ıs Manuel Castro Silvia Bertoluzza Instituto Superior T´ ecnico, Lisbon Istituto di Analisi Numerica del CNR, Pavia luis@civil.ist.utl.pt http://www.civil.ist.utl.pt/˜luis wavelet@dragon.ian.pv.cnr.it http://dragon.ian.pv.cnr.it/˜aivlis Wavelets in Numerical Analysis and Simulation Funchal, 11-12 March 2002 DECivil N´ ucleo de An´ alise de Estruturas - ICIST

  2. 2 Outline 1. Motivation 2. Adaptive collocation techniques 3. Plane elasticity problems 4. Numerical applications 5. Reissner-Mindlin plate bending problems 6. Numerical applications 7. Conclusions and further developments

  3. 3 Motivation Numerical Simulation of structural engineering problems

  4. 4 Adaptive Collocation techniques • Bertoluzza, S., “An Adaptive Collocation Method based on Interpolating Wavelets”, in Multi- scale Wavelet Methods for Partial Differen- tial Equations , edited by Dahmen, Kurdila and Oswald, Academic Press, 1997. • Bertoluzza, S. and Naldi, G., “A wavelet col- location method for the numerical solution of partial differential equations”, ACHA, 3, 1996. • Bertoluzza, S., “Adaptive wavelet collocation method for the solution of Burgers equation”, Transport Theory and Stat. Phys. , 25, 1996. Interpolating wavelets • Deslaurier, G. and Dubuc, S., “Symmetric it- erative interpolation processes, Constructive Approximation , 5, 1989.

  5. 5 Deslaurier-Dubuc interpolating functions 1.2 1 0.8 0.6 0.4 0.2 0 -5 -4 -3 -2 -1 0 1 2 3 4 5 -0.2 � θ N ( x ) = φ L ( y ) φ L ( y − x ) dy N = 2 L + 1 Properties • suppθ = [ − N, N ] • θ is refinable � φ L ( y ) φ L ( y − n ) dy = δ n 0 • θ ( n ) = • Polynomials up to order N can be represented as a linear combination of the integer trans- lates of θ .

  6. 6 Classical Theory of Elasticity     f x t xγ     f =  t = f y t yγ      u x ( x, y )   Displacements u = u y ( x, y )     ε xx ( x, y )         Strains ε = ε yy ( x, y )   ε xy ( x, y )         σ xx ( x, y )         Stresses σ = σ yy ( x, y )   σ xy ( x, y )      

  7. 7 Classical Theory of Elasticity Definition of the stress field ∂ u x ∂ u y σ xx = e 1 ∂ x + e 2 ∂ y ∂ u x ∂ u y σ yy = e 2 ∂ x + e 1 ∂ y � ∂u x ∂y + ∂u y � σ xy = e 3 ∂x E e 1 = 1 − ν 2 ν E e 2 = 1 − ν 2 E e 3 = 2 (1 + ν )

  8. 8 Classical Theory of Elasticity Problem 1 Find u = [ u x , u y ] T such that A u = f (Ω) u = g (Γ u ) B u = t (Γ σ )  ∂ 2 ∂ 2 ∂ 2  ∂ x 2 + e 3 ( e 2 + e 3 ) e 1   ∂ y 2 ∂ x ∂ y     A =     ∂ 2 ∂ 2 ∂ 2     ( e 2 + e 3 ) e 2 ∂ x 2 + e 1   ∂ y 2 ∂ x ∂ y ∂ ∂ ∂ ∂   ∂ x + e 3 n y ∂ y + e 3 n y e 1 n x e 2 n x   ∂ y ∂ x   B =     ∂ ∂ ∂ ∂     ∂ y + e 2 n y ∂ x + e 1 n y e 3 n x e 3 n x   ∂ x ∂ y

  9. 9 Numerical Applications 4 − 4 9 . 9 9 0 1 3 3 − 0 . 8 6 2 4 2 −3.3314 −1.1118 − 0 . 5 6 0 9 8 2 2 8 7 1 0 1 . −0.36002 3.3274 1 7 1 9 0 6 5 4 − 0 . 1 5 5 . 7.7665 0 0 0 2 4 6 8 0 2 4 6 8 4 4 −0.48343 −1.523 3 3 − −1.2631 2 . 3 2 2 0 −1.783 2 8 3 4 1 1 3 8 4 . 0 − 0 0 0 2 4 6 8 0 2 4 6 8

  10. 10 Numerical Applications 4 4 Solução exacta Solução exacta Malha uniforme com Jmax=4 Malha uniforme com Jmax=4 3.5 3.5 3 3 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 0 −10 −8 −6 −4 −2 0 2 4 6 8 10 −1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 4 3.5 Solução exacta 3 2.5 Solução com uma malha uniforme com Jmax=4 2 1.5 1 0.5 0 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0

  11. 11 Numerical Applications Discretisation N j 0 j max n grid n dof T CP U A 4 3 3 81 162 0.04 B 4 3 4 289 578 0.72 C 4 3 5 1089 2178 52.63 Table 1: Discretisations involved in the analysis of the square cantilever −1 10 error STRAIN ENERGY ERROR Uniform grid refinement Number of degrees of freedom −2 10 2 3 4 10 10 10

  12. 12 Square cantilever σ xx σ yy σ xy q V 3.000E+00 8.000E-01 0.000E+00 0.000E+00 0.000E+00 -3.000E+00 -1.000E+00 -1.300E+00 = 2.50 p a / E σ xx σ yy σ xy q V 3.000E+00 8.000E-01 0.000E+00 0.000E+00 0.000E+00 -3.000E+00 -1.000E+00 -1.300E+00 = 2.50 p a / E

  13. 13 Square cantilever 1 1 "malhai.res" "malha2.res" 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 1 "malha3.res" "malhaf.res" 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 error −1 10 STRAIN ENERGY ERROR Uniform grid refinement −2 10 Adaptive refinement Number of degrees of freedom −3 10 2 3 4 10 10 10

  14. 14 Square cantilever Mesh j max n grid n dof initial 4 289 578 2 5 597 1194 3 6 868 1736 final 7 917 1834 Table 2: Adaptive non-uniform grids used in the solution of the square plate σ xx σ yy σ xy q V 3.000E+00 8.000E-01 0.000E+00 0.000E+00 0.000E+00 -3.000E+00 -1.000E+00 -1.300E+00 = 2.50 p a / E

  15. 15 Numerical Applications 1.2 1.2 1 1 0.8 0.8 0.6 0.6 0.4 0.4 −1.2601 0.2 0.2 0 0 0 0.5 1 0 0.5 1 1.2 1.2 1 1 0.8 0.8 0.49277 0.6 0.6 0.4 0.4 −0.025409 0.2 0.2 0 0 0 0.5 1 0 0.5 1

  16. 16 1.2 1.2 1 1 0.8 0.8 0.49277 0.6 0.6 1.0109 0.4 0.4 9 0 4 5 2 0 0.2 0.2 . 0 − 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2 1.2 1 1 0.8 0.8 − 0 . 0 5 0.6 0.6 5 6 5 9 −0.13177 0.4 0.4 −0.36008 0.020447 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2 1.2 1 1 0.8 0.8 −0.0454 0.6 0.6 −0.13834 0.4 0.4 0.2 0.2 −0.41715 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

  17. 17 1.2 1.2 1 1 0.8 0.8 −0.038184 0.6 0.6 −0.12615 0.4 0.4 −0.21412 0.2 0.2 −0.47802 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2 1.2 1 1 0.8 0.8 −0.048228 0.6 0.6 −0.13607 0.4 0.4 −0.22391 0.2 0.2 −0.3996 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2 1.2 1 1 − 0 . 0.8 0.8 0 3 5 4 3 1 0.6 0.6 −0.12469 0.4 0.4 −0.21394 0.2 0.2 − 0 . 4 8 1 7 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

  18. 18 Square plate with a central crack Mesh j max n grid n dof 1 4 289 578 8.1355 2 5 625 1250 0.6666 3 6 670 1340 0.6591 4 7 812 1624 0.6530 5 8 823 1646 0.6529 6 9 1082 2164 0.6529 1.2 1.2 1 1 0.97356 0.8 0.8 0.6 0.6 0.4 0.4 −0.05394 64782 0.2 0.2 0 0 0 0.5 1 0 0.5 1 1.2 1.2 1 1 − 0 . 0 3 5 4 3 1 0.8 0.8 0.6 0.6 − 0 0.4 0.4 . 1 −0.21394 2 4 6 0.2 0.2 9 0 0 0 0.5 1 0 0.5 1

  19. 19 Non-rectangular elements

  20. 20 Gravity dam σ xx σ yy σ xy q V 1.000E+00 4.000E+00 5.000E+00 0.000E+00 0.000E+00 -8.000E+00 -1.000E+00 -5.000E-01 = 16.6667 p a / E 3 "mesh.res" 2.5 2 1.5 1 0.5 0 0 1 2 3 4 5

  21. 21 Gravity dam σ xx σ yy σ xy q V 0.000E+00 0.000E+00 1.500E+01 0.000E+00 -2.000E+01 -7.000E+01 -1.500E+01 = 83.3333 p a / E 3 "mesh.res" 2.5 2 1.5 1 0.5 0 0 1 2 3 4 5

  22. 22 Gravity dam σ xx σ yy σ xy q V 0.000E+00 0.000E+00 1.500E+01 0.000E+00 -2.000E+01 -7.000E+01 -1.500E+01 = 83.3333 p a / E 3 "mesh.res" 2.5 2 1.5 1 0.5 0 0 1 2 3 4 5

  23. 23 Reissner-Mindlin plate bending theory     0 m xγ                 f = 0 t = m yγ      q   q γ            θ x ( x, y )         Displacements u = θ y ( x, y )   w ( x, y )         χ xx ( x, y )         χ yy ( x, y )             Strains ε = χ xy ( x, y )   γ x ( x, y )              γ y ( x, y )        m xx ( x, y )         m yy ( x, y )             Stress resultants σ = m xy ( x, y )   v x ( x, y )             v y ( x, y )      

  24. 24 Reissner-Mindlin plate bending theory Definition of the stress resultant fields � ∂ θ x ∂ x + ν ∂ θ y � m xx = D f ∂ y ν ∂ θ x ∂ x + ∂ θ y � � m yy = D f ∂ y � ∂θ x ∂y + ∂θ y � m xy = D 1 ∂x θ x + ∂w � � v x = D 2 ∂x θ y + ∂w � � v y = D 2 ∂y E h 3 D f = 12(1 − ν 2 ) D 1 = G h 3 12 D 2 = 5 6 G h

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend