acoustic radiation of a vibrating wall covered by a
play

Acoustic radiation of a vibrating wall covered by a porous layer - PowerPoint PPT Presentation

158th Meeting of the Acoustical Society of America San Antonio, Texas Acoustic radiation of a vibrating wall covered by a porous layer Transfer impedance concept and effect of compression Nicolas DAUCHEZ Supmca Institut Suprieur de


  1. 158th Meeting of the Acoustical Society of America San Antonio, Texas Acoustic radiation of a vibrating wall covered by a porous layer Transfer impedance concept and effect of compression Nicolas DAUCHEZ Supméca – Institut Supérieur de Mécanique de Paris, Saint Ouen, France Olivier DOUTRES, Jean-Michel GENEVAUX Laboratoire d’Acoustique UMR CNRS 6613 Université du Maine, Le Mans, France 29 october 2009

  2. Context • Porous materials used in industrial applications ( automotive, aeronautics ,…) Introduction for noise reduction Part I Part II Part III Conclusion � sound absorption (trim panel, floor , …) � vibration damping (fuselage) � sound insulation (fuselage) 2

  3. Context • Porous material attached to a vibrating structure Influence of a porous layer on the acoustic radiation of a plate ? Introduction Part I Method Part II Part III • Analytical model using transfert Conclusion impedance concept • Experimental validation � Porous layer impedance applied to a moving wall: Application to the radiation of a covered piston, Doutres, Dauchez, Genevaux, J. Acoust. Soc. Am. 121 (1), 2007 3

  4. Introduction 1. Transfert impedance concept Introduction 2. Acoustic radiation efficiency Part I 2.1. Infinite plate Part II 2.2. Flat piston Part III 2.3. Circular plate Conclusion 3. Application to multilayer Conclusion 4

  5. Problem to be solved Introduction Part I Part II Part III Ω ∇ + = p k p Conclusion in , ² ² 0 Source at ∂ p Γ + = A p B h r boundary at , ( ) ∂ n Dirichlet Neumann (imposed pressure) (imposed velocity) 5

  6. Problem divided into 2 cases : Introduction Part I Part II Part III Conclusion a) Acoustic excitation : amplitude of reflected wave ? 6

  7. Problem divided into 2 cases : Introduction Part I Part II Part III Conclusion a) Acoustic excitation : amplitude of reflected wave ? b) Vibratory excitation : amplitude of transmitted wave ? 7

  8. Surface Impedance Z S Porous layer characterized by p 1 ( 0 ) Z S = v ( 0 ) Introduction R = 1 + − jkz jkz p z e R e ( ) Part I ( ) 1 Part II = jkz − − jkz v z e R e ( ) Z Part III 0 Conclusion The reflected wave is function of surface impedance Z S : − Z Z = ρ = Z c R S 0 with + Z Z 0 0 0 S 0 Z S is measured in a Kundt tube 8

  9. Transfert impedance Z T Porous layer characterized by p T ( 0 ) 1 = Z T − v v ( 0 ) p Introduction Non-porous massless coating : Part I Part II Bulk modulus Z T = j ω Part III Thickness Conclusion The transmitted wave is function of transfert impedance Z T : Z = − = jkz p z T e T T Z v ( ) gives p + Z Z 0 T 0 Can Z T be measured in a Kundt tube ? Is Z T equivalent to Z S ? 9

  10. A simple coating : Spring Static law: K − − = p v v ( 0 ) ( ) 0 p ω j K Introduction = v 0 Case a: Part I p p Part II ( 0 ) = = ω Z S K j / Part III v p Conclusion ( 0 ) = = ω Z K j / Case b: T − v v p Elastic layer K Bulk modulus = = = Z Z T S ω ω j j L 10

  11. Adding a layer defined by its mass M s Dynamic law: K ω = − − j M v p v v ( 0 ) ( ) S p ω j K Introduction = v 0 Case a: Part I p p Part II ( 0 ) = = ω + ω Z j M K j / S s Part III v Conclusion K Z p ( 0 ) ⇒ = Z = Z 0 Case b: T ω − ω j Z j M v 0 s 0 ω → Z T ≠ Z S excepted when 0 : Elastic layer at low K Bulk modulus = = = Z Z frequency T S 11 ω ω j j L

  12. Monophasic continuous layer Transfert matrix: −  p   a b   p L  ( 0 ) ( )   =         − v c d v L       ( 0 ) ( ) Z e , k kd jZ kd  a b    cos sin e = Introduction     c d j Z kd kd     / sin cos Part I e a Part II = ⇒ Z S = v Case a: 0 p Part III c Z p ( 0 ) ⇒ = Conclusion Z T = Z 0 Case b: − − a cZ v 0 1 0 kd ω → → → a c j Z T ≠ Z S excepted when 0 : 1 and Z e Z Monophasic Bulk modulus = = = Z Z j e layer at low T S ω kd j L 12 frequency

  13. Thickness 20 mm Bulk modulus 140(1+j0.1) kPa Impedance curves 30 kg.m -3 Density Real part Imaginary part 14000 8000 Introduction 6000 12000 4000 Part I 10000 imaginary part of impedance 2000 real part of impedance 8000 Part II 0 6000 -2000 Part III 4000 -4000 2000 Conclusion -6000 0 -8000 -2000 -10000 -4000 -12000 2 3 4 2 3 4 10 10 10 10 10 10 Frequency (Hz) Frequency (Hz) Z T transfert impedance ≠ Z S surface impedance 13

  14. Poroelastic layer: Surface impedance Z S Biot-Allard theory in 1D in the porous layer : 2 waves travelling in each direction Two waves in fluid medium Boundary conditions : Continuity of Stress and displacement Introduction s = f = v v ( 0 ) ( 0 ) 0 at x=0 Part I = − φ s + φ f v d v v ( ) ( 1 ) ( 0 ) ( 0 ) at x=d Part II σ f = − φ σ s = − − φ d p d d p d ( ) ( ) and ( ) ( 1 ) ( ) Part III Conclusion Z 2 ,k 2 1 2 p d ( ) A Z S = v(d) B v d ( ) E C F Excitation D p(d) 14 0 x d

  15. Poroelastic layer: Transfert impedance Z T Biot-Allard theory in 1D in the porous layer : 2 waves travelling in each direction p d ( ) ⇒ = Z One waves in fluid medium v d 0 ( ) Boundary conditions : Continuity of Stress and displacement Introduction s = f = v v v Part I ( 0 ) ( 0 ) at x=0 p = − φ s + φ f Part II v d v v ( ) ( 1 ) ( 0 ) ( 0 ) at x=d Part III σ f = − φ σ s = − − φ d p d d p d ( ) ( ) and ( ) ( 1 ) ( ) Conclusion Z 2 ,k 2 1 2 Excitation A v P v(d) p d ( ) B = Z E T − v v d ( ) C p D 15 0 x d

  16. Impedance curves Real part Imaginary part Introduction Part I Part II Part III Conclusion Z T transfert impedance ≠ Z S surface impedance 16

  17. Boundary conditions at excitation interface Introduction Part I Part II Part III Conclusion Fluid-porous interface : Wall-porous interface : ω = = s f ω = − φ + φ v j u u s f v j u u / ( 0 ) / ( 1 ) p ⇒ The skeleton is much more excited in case b) 17

  18. Relative skeleton velocity for both excitation at fluid-porous interface vibratory acoustical Introduction Part I Strong Part II influence of frame borne Part III No strain wave Conclusion in skeleton Skeleton almost at rest 18

  19. Conclusion of Part I Z S Z T Introduction Part I Part II Part III Conclusion Z ≠ Z Excepted at low frequency, T S Z T can not be measured in a Kundt tube 19

  20. 1 impedance for each problem Introduction Part I Part II Part III Conclusion ∂ Z p + z = jk p 0 ( a ) 0 ∂ Z S ∂ Z p − = ωρ jk p j v 0 ( b ) p ∂ Z z 0 20 T

  21. Introduction 1. Transfert impedance concept Introduction 2. Acoustic radiation efficiency Part I 2.1. Infinite plate Part II 2.2. Flat piston Part III 2.3. Circular plate Conclusion 3. Application to multilayer Conclusion 21

  22. 2. Acoustic radiation efficiency Radiated acoustic Π power σ = Π a R Introduction v Injected vibratory Part I power Part II 2 p ∫∫ 2 sin Part III Π = < > ϑ ϑ ϕ < >= I r d d I with: a ρ c 2 Conclusion S 0 0 � 2 w r ( ) ∫∫ Π = ρ c dS v 0 0 2 S 22

  23. 2.1. Acoustic radiation efficiency 2 2 T Z σ = = T Infinite plate at normal incidence (1D) : R + Z Z Z v 2 T p 0 0 Introduction Part I Part II (0 dB) Part III Conclusion with Z S with Z T no effect increase decrease 23

  24. 2.2. Acoustic radiation of a flat piston in semi-infinite field Calculation of the far field pressure: Rayleigh Integral Z T Z 0 Introduction Reflective Part I baffle with Part II Part III Conclusion For a flat piston of radius a in far field : Z 0 24

  25. 2.2. Acoustic radiation of a flat piston in semi-infinite field Measurement : Introduction Part I Part II Part III Conclusion 2 materials : A : polymer foam B : soft fibrous 25

  26. 2.2. Acoustic radiation of a flat piston in semi-infinite field A : polymer foam with porous Introduction Part I Part II Part III Conclusion 26

  27. 2.2. Acoustic radiation of a flat piston in semi-infinite field B : soft fibrous Introduction with porous Part I Part II Part III Conclusion 27

  28. Introduction 1. Transfert impedance concept Introduction 2. Acoustic radiation efficiency Part I 2.1. Infinite plate Part II 2.2. Flat piston Part III 2.3. Circular plate Conclusion 3. Application to multilayer Conclusion 28

  29. 2.3. Radiation efficiency of a circular plate ρ ω h 2 ∇ − = w w 4 Plate equation 0 D β J a ( ) = β − β w r J r n I r 0 0 ( ) ( ) ( ) Introduction Axisymetrical modes n n n β 0 0 I a 0 0 ( ) n 0 0 Part I F w r w r ( ) ( ) ∑ Part II = w r Modal synthesis n s n ( ) β − β π Λ D a 4 4 2 ( ) Part III n n n Conclusion Rayleigh ρ h integration β = ω 4 2 with: 0 n n D Acoustic Vibratory power power 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend