accelerators
play

Accelerators LISHEP Lecture II Oliver Brning CERN - PDF document

Accelerators LISHEP Lecture II Oliver Brning CERN http://bruening.home.cern.ch/bruening Summary Lecture I Motivation & History Particle Sources Acceleration Concepts: Equations and Units DC Acceleration RF Acceleration


  1. Accelerators LISHEP Lecture II Oliver Brüning CERN http://bruening.home.cern.ch/bruening

  2. Summary Lecture I Motivation & History Particle Sources Acceleration Concepts: Equations and Units DC Acceleration RF Acceleration Electro−Magnetic Waves & Boundary Conditions Summary

  3. Circular Accelerators II) Cyclotron Synchrotrons beam energy Collider Concepts: need for focusing collider versus fixed target particle − anti particle collider luminosity Summary

  4. Time Varying Fields beam E Linear Acceleration: E beam bunched beam long accelerator! E Circular Accelerator: beam

  5. Circular Accelerators I Cyclotron Lawrence 1929: Q ω = B m m v r = Q B m = const f = const orbits RF B = const dee orbits beam extraction RF - H to 80 keV Livingston 1931: Lawrence 1932: p to 1.2 MeV (NP 1939)

  6. Cyclotron 1931: 4.5 inch cyclotron by Livingston − H to 80 keV 11 inch cyclotron by Lawrence: p to 1.2 MeV 12 inch build by T. Koeth (1999)

  7. Disadvantage: High Energy: γ >> 1 f = const. RF short bunch trains large dipole magnet R = const. Synchrotron: Q B ω = γ m 0 0 m γ 0 r = v B = const. Q B small magnets, f = const. v = c RF high beam energy requires strong magnets & large storage ring!

  8. Bending Magnet µ µ B = H H = I N 0 µ < 1: Dia ����������� ����������� µ >> 1 ����������� ����������� � � ����������� ����������� coil µ > 1: Para � � ����������� ����������� ����������� ����������� h H 0 ����������� ����������� µ >> 1: Ferro ����������� ����������� ����������� ����������� ������������ ������������ l H ������������ ������������ E yoke beam vacuum chamber Maxwell Equations: B = B 0 E µ H = H E 0 H = h H + l H H = h H + l H H = h H + l H 0 E B = N I 0 µ 0 B h H B [T] 1 e B -1 = 0.3 [m ] = p p [GeV] ρ

  9. Bending Magnet LEP injection area dipole magnet: Ω B = 0.135 T; I = 4500 A; R = 1 m P = 20 kW / magnet ca. 500 magnets P = 10 MW

  10. Circular Accelerators II Synchrotron: Cosmotron 3 GeV protons 1952: electrons 1949: injection �������� �������� magnet �������� �������� B �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� RF cavity vacuum chamber extraction / target 1955: Bevatron 6 GeV protons - p (fixed-target experiment) E 2 E = 2 m c 1 + - 1 cm 0 2 m c 2 0

  11. Berkeley Bevatron

  12. Synchrotron Radiation Quantum Picture: q γ B γ bending magnet radiation fan in bending plane 1 opening angle γ synchrotron 4 particle γ light cone 2 q N trajectory P ρ 2 3 γ <E > ρ γ polarised

  13. Synchrotron Radiation Acceleration: uniform motion E E acceleration 4 γ P 2 ρ polarised

  14. Examples ρ E N U E P γ 12 [keV] [MeV] [GeV] [MW] [km] [10 ] 2.1 90 3.1 4.7 260 45 LEP 1 2800 23 100 3.1 4.7 LEP 2 715 7000 3.1 312 0.007 0.005 LHC 0.04 γ 1.3 MeV −rays: Co 60 keV X−rays: Visible Light: eV X−rays LEP 1 γ LEP 2 −rays LHC UV light

  15. Summary Acceleration Concept: 25 MeV Static field discharge AC field no limit length multiple passages Circular Acceleration: Cyclotron 25 MeV non−relativistic Synchrotron no limit small magnets synchrotron radiation In Practice: Combination of several options

  16. CERN Accelerator Complex searching at each acceleration stage for the most efficient acceleration concept one uses in practice a combination of several types!

  17. Collider Rings 1960: fixed target physics (bubble chamber) But: E 2 E = 2 m c 1 + − 1 cm 0 2 2 m c 0 E = 2 E Collider: p CM GeV 2000 Tevatron center of mass energy 1500 1000 collider SppS 500 ISR fixed target Tevatron SPS 400 600 800 1000 200 GeV particle energy + − 1960 : e / e collider + − p / p collider 1970 :

  18. +/ - Features ( ) Advantages: E = 2 E p CM Disadvantages: not all particles collide in one crossing long storage times requires 2 beams: two rings anti-particles collision collision point regions beam-beam interaction

  19. Luminosity −2 −1 [ L ] = cm s N / sec = L σ ev interaction region ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� N N 2 1 area A n N N f L = b 1 rev 2 A high bunch current beam−beam; collective effects many bunches total current (RF); collective effects small beam size hardware

  20. Beam−Beam Parameter the electro−magnetic fields of beam2 act on the particles of beam1 transform into moving frame of test particle and calculate Lorentz force r β F = q (E + v B) =q (E + c B ) r x φ Gauss theorem and Ampere’s law: r 2 r E = 1 π ρ 2π r 2 r E = (r ) dr ε r 0 0 r µ ρ π 2π β c r (r ) dr 2 r B = 2 r E = 0 φ 0 Gaussian distribution for round beam: 2 β 2 r N q q (1 + ) 2 1 2 1 − exp(− ) F (r) = 2 π ε r 2σ 2 0 force acts in the radial direction

  21. Beam−Beam Parameter F r 1σ small amplitudes (with v c): r F N r p 2 quadrupole γ 2 σ v p 2 e 1 with: r = p 4 π ε 2 m c 0 p strong non−linear field: tune depends on oscillation amplitude strong non−linear field bunch intensity limited by non−linear resonances

  22. Lepton versus Hadron Collider Leptons: elementary particles well defined energy γ light particles ( >> 1) synchrotron radiation (size, damping, magnet type) Hadrons: multi particle collisions energy spread (discovery range vs. background) γ heavy particles ( < 10000) no synchrotron radiation (no damping, superconducting magnets) - + p p Example: 1985 SppS Z 0 + - e e 1990 LEP

  23. Collider Rings + − 1960 : e / e collider E = 2 E p CM + − p / p collider 1970 : Synchrotron rings as collider:

  24. Stanford: e− / e− collisions in 1959 Ada: electron − positron collision 1961

  25. VEP−1: electron / positron collider build in 1961 but no physics before ´64

  26. ISR: proton − proton collider 1971

  27. Trajectory Stability Vertical Plane: 1 2 gravitation: Δ Δ s = g t 2 −2 g = 10 m s Δ t = 60 msec Δ s = 18 mm 660 Turns! requires focusing! y B (y) ideal orbit x B particle trajectory v F x F B v

  28. Quadrupole Focusing Quadrupole Magnet B = −g y x N S B = −g x y F = g x R x S N F = −g y y defocusing in horizontal plane! Alternate Gradient Focusing cut the arc sections in Idea: focusing and defocusing elements ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ω > ω 0 β

  29. Strong Focusing ISR quadrupole magnet at CERN: SPS magnet sequence in the tunnel:

  30. Storage Ring Tune: number of oscillations Q = turn Q ; Q ; Q s x y Envelope Function: 2π φ 0 β y(s) = A sin( Q s + ) L sorage ring circumference amplitude term amplitude term due to focusing due to injector s β( ) = β( ) s + L Q = 1 1 ds 2π β( ) s

  31. Closed Orbit D B B F B F D B B D F B B = -g y x B = -g x y Orbit Offset in Quadrupole: x = x + x 0 quadrupole B = -g y x B = -g x - g x y 0 dipole component orbit error

  32. Dipole Error and Orbit Stability Q = N with dipole field perturbations: Kick the perturbation adds up resonance with instability! arbitrary field imperfections: similar instabilities for: n Q + m Q = p x y avoid resonances!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend