accelerators
play

Accelerators LISHEP Lecture I Oliver Brning CERN - PDF document

Accelerators LISHEP Lecture I Oliver Brning CERN http://bruening.home.cern.ch/bruening Particle Accelerators Physics of Accelerators: High power RF waves Cryogenics Super conductivity Magnet design + construction Vacuum surface


  1. Accelerators LISHEP Lecture I Oliver Brüning CERN http://bruening.home.cern.ch/bruening

  2. Particle Accelerators Physics of Accelerators: High power RF waves Cryogenics Super conductivity Magnet design + construction Vacuum surface science, solid state physics, electro dynamics, engeneering, computer science Physics of Particle Beams: Single particle dynamics Collective effects Two beam effects classical and quantum mechanics, non-linear dynamics, relativity, electro dynamics, computer science

  3. Overview ) I Motivation & Sources + Linear Accelerators II ) Circular Accelerators + main limitations III ) Challanges for the LHC IV ) Other Accelerator Projects & Applications

  4. Overview and History: • S. Weinberg, ’The Discovery of Subatomic Particles’, Scientific American Library, 1983. (ISBN 0-7167-1488-4 or 0-7167-1489-2 [pbk]) (539.12 WEI) • C. Pellegrini, ’The Development of Colliders’, AIP Press, 1995. (ISBN 1-56396-349-3) (93:621.384 PEL) • P. Waloschek, ’The Infancy of Particle Accelerators’, DESY 94-039, 1994. • R. Carrigan and W.P. Trower, ’Particles and Forces - At the Heart of the Matter’, Read- ings from Scientific American, W.H. Freeman and Company, 1990. • Leon Lederman, ’The God Particle’, Delta books 1994 • Lillian Hoddeson (editor), ’The rise of the standard model: particle physics in the 1960s and 1970s’, Cambridge University Press, 1997 • S. Weinberg, ’Reflections on Big Science’, MIT Press, 1967 (5(04) WEI) Introduction to Particle Accelerator Physics: • Mario Conte and William McKay, ’An Introduction to the Physics of Particle Accelera- tors’, Word Scientific, 1991 • H.Wiedemann, ’Particle Accelerator Physics’, Springer Verlag, 1993. • CERN Accelerator School, General Accelerator Physics Course, CERN Report 85-19, 1985. • CERN Accelerator School, Second General Accelerator Physics Course, CERN Report 87-10, 1987. • CERN Accelerator School, Fourth General Accelerator Physics Course, CERN Report 91-04, 1991. • M. Sands, ’The Physics of Electron Storage Rings’, SLAC-121, 1970. • E.D. Courant and H.S. Snyder, ’Theory of the Alternating-Gradient Synchrotron’, Annals of Physics 3 , 1-48 (1958). • CERN Accelerator School, RF Engeneering for Particle Accelerators, CERN Report 92- 03, 1992. • CERN Accelerator School, 50 Years of Synchrotrons, CERN Report 97-04, 1997. • E.J.N. Wilson, Accelerators for the Twenty-First Century - A Review, CERN Report 90-05, 1990.

  5. Special Topics and Detailed Information: • J.D. Jackson, ’Calssical Electrodynamics’, Wiley, New York, 1975. • Lichtenberg and Lieberman, ’Regular and Stochastic Motion’, Applied Mathematical Sci- ences 38, Springer Verlag. • A.W. Chao, ’Physics of Collective Beam Instabilities in High Energy Accelerators’, Wiley, New York 1993. • M. Diens, M. Month and S. Turner, ’Frontiers of Particle Beams: Intensity Limitations’, Springer-Verlag 1992, (ISBN 3-540-55250-2 or 0-387-55250-2) (Hilton Head Island 1990) ’Physics of Collective Beam Instabilities in High Energy Accelerators’, Wiley, New York 1993. • R.A. Carrigan, F.R. Huson and M. Month, ’The State of Particle Accelerators and High Energy Physics’, American Institute of Physics New Yorkm 1982, (ISBN 0-88318-191-6) (AIP 92 1981) ’Physics of Collective Beam Instabilities in High Energy Accelerators’, Wiley, New York 1993.

  6. I) Motivation & Sources Linear Accelerators Motivation Particle Sources Acceleration Concepts: Equations and Units DC Acceleration RF Acceleration Electro−Magnetic Waves & Boundary Conditions Summary

  7. Search for Elementary Particles Stage I: Nuclear Physics Chronology: Dalton Atom 1803: M & P Curie Atoms can decay 1896: Electron Thomson 1896: + Nucleus Rutherford 1906: Electron α + N O + H+ 1911: Rutherford Disintegration of Nuclei! Particle Accelerators

  8. NP 1906: discovery of the electron

  9. Rutherford 1906 − 1911: experimental evidence of atom structure NP for N. Bohr in 1922

  10. Stage II: Particle Physics Chronology (Theory): 2 1905: Einstein E = mc 1930: Dirac Antimatter π 1935: - Meson Yukawa Chronology (Experiments): (Cosmic Rays) + Anderson 1932: e µ 1937: Anderson p - π } ? Accelerators

  11. + 1932: Anderson e (NP 1936: cosmic rays) ionizing particle

  12. bubble chamber particle Κ

  13. − e : Particle Sources: − e + − Cathode Rays

  14. Particle Sources: ions + − H + e H + Example: − 2 e 2 2 + + − + + e p + − H + e H H 2 + − H + e H + 2 e − Antimatter: Pair Production

  15. Acceleration Concepts Lorentz Force: dp ( ) + = Q E v x B * dt Energy gain only due to E field! Scalar and Vector Potential: 1 e A φ - -grad E = B = rot A c t e Electrostatic fields (A = 0) φ Time varying fields ( = 0)

  16. Units Energy Gain: 1 eV 1 Volt E e − −19 (1.6 * 10 J) Common Units: keV, MeV, GeV, TeV 12 ) 3 6 9 ( 10 , 10 , 10 , 10 Total Particle Energy: 2 γ Relativity: E = mc ; m = * m 0 2 γ = 1/ 1 − ; β = v/c β −31 m = 9.11*10 kg; 0.51 MeV Electron: 0 −27 m = 1.67*10 kg; 0.94 GeV Proton: 0

  17. Electrostatic Fields ion source High Voltage Unit: + acceleration high voltage unit tube V = 200 kV max - target Cascade Generator: 2U 4U 6U 0 o o o diodes ω U = U sin t o capacitors 1928: Cockroft + Walton 800kV p + Li 2 He 1932: 700kV (p) (Nobel Prize 1951)

  18. High Voltage Unit at CERN:

  19. Cascade Generator at CERN:

  20. Van de Graaf Generator Single Unit: top terminal + + 10 MV + + + + + charge collector + ion + + source + + + + charge + + + + conveyor + belt + evacuated + + acceleration + channel 50 kV dc spraycomb experiment spectrometer magnet V = 10 MVolt max

  21. Van de Graaf Generator Tuve 1935:

  22. Van de Graaf Generator Tandem generator: experiment pressure tank negative + high voltage terminal + ion Source - - - - + + + + + + + + - - - - - + - spraycomb striping foil 50 kV or gas dc charge conveyor belt V = 25 MVolt max

  23. Van de Graaf Generator Daresbury: 42 m high 20 MVolt 2 * Tandem Van de Graaf in BNL 1970

  24. Time Varying Fields Linear Acceleration: beam E E E beam E−Field in the wrong direction! bunched beam requires shielding and timing between ´v´ and freq! long accelerator structure requires energy to move charges on capacitor plates!

  25. Drift Tubes Ising 1924: V AC Voltage: t Symmetric line: + BEAM + + − − + + + − − + + − l = v T/2 part 1928: demonstrated by Wideroe 1MHz, 25kV oscillator 50kV potassium ions Lawrance: 1.3MV mercury ions with 48kV

  26. Drift Tubes But: support tubes have capacitive impedance f < 7MHz operation limited to low frequencies l = v T/2 part + BEAM + + − − + + + − − + + − implies large structures for v = c! f = 7MHz −> l = 21 meter (for v = c)! only efficient for low energetic particles high energetic particles require higher frequencies find a structure with passive supports

  27. Resonance Structures e A E = − 1 e E rot B = µε c e c e t t E capacitor beam AC generator Resonator: 2 µ N A L = 0 capacitor l C = ε A 0 coil d B beam E beam cavity cavity f; Q; R

  28. LEP Cavity TM mode with 352 MHz; 1.5 MV/m 010

  29. LEP Cavity

  30. Resonance Structures Cavity Resonator: beam axis H E efficient use of energy exact dimensions determined by Maxwell Equations with boundary conditions

  31. Time Varying Fields Maxwell Equations without Sources 1 B e Δ Δ x E + = 0 b) * E = 0 a) c t e µε e E Δ Δ x B − = 0 d) * B = 0 c) c t e d) and Rotation on b) Δ Δ Δ Δ Δ plus: x ( x V ) = ( V ) − V Wave equation: 2 2 c 2 c 2 2 2 e B Δ E e Δ t 2 = B = E µε µε 2 e t e

  32. Time Varying Fields Plane Electro Magnetic Wave: ω ω ik n x − t ik n x − t B = B e E = E e 0 0 k = 2 π µε B = n x E 0 0 λ No acceleration in the direction of propagation!

  33. Wave Guide Boundary Conditions option of two field configurations Transverse Electric Waves (TE): e B E = 0 everywhere; Boundary condition: = 0 z n e s E H H λ 2 immage charges Transverse Magnetic Waves (TM): Boundary condition: E = 0 B = 0 everywhere; z n s E H λ 2 wall currents displacement currents

  34. Boundary Conditions I Transverse Electric Waves (TE): e B E = 0 everywhere; Boundary condition: = 0 z n e s Transverse Magnetic Waves (TM): B = 0 everywhere; Boundary condition: E = 0 z n s TM 01

  35. Solutions for TM Waves Cylindrical Coordinates: Maxwell Equations: Example TM−mode: (Chapter 8 in Jackson: Classical Electrodynamics) mode frequency:

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend