accelerating cosmologies in an integrable model with
play

Accelerating cosmologies in an integrable model with noncommutative - PowerPoint PPT Presentation

1 Accelerating cosmologies in an integrable model with noncommutative minisuperspace variables arXiv:1903.07895 [gr-qc] N a h o mi K a n ( N I T , G i f u C o l l e g e ) M a s a s h i K u n i y a s u ,


  1. 1 Accelerating cosmologies in an integrable model with noncommutative minisuperspace variables arXiv:1903.07895 [gr-qc] N a h o mi K a n ( N I T , G i f u C o l l e g e ) M a s a s h i K u n i y a s u , K i y o s h i S h i r a i s h i , a n d K o h j i r o h T a k i mo t o ( Y a ma g u c h i U n i v e r s i t y ) S t r i n g s a n d F i e l d s 2 0 1 9

  2. 2 §1. Introduction *We study classical and quantum noncommutative cosmology with a Liouville-type scalar degree of freedom. *The noncommutativity is imposed on the minisuperspace variables through a deformation of the Poisson algebra. *We investigate the effects of noncommutativity of minisuperspace variables on the accelerating behavior of the cosmic scale factor. *The probability distribution in noncommutative quantum cosmology is also studied and we propose a novel candidate for interpretation of the probability distribution in terms of noncommutative arguments. S t r i n g s a n d F i e l d s 2 0 1 9

  3. 3 §1 . I n t r o d u c t i o n §2 . T h e mo d e l §3 . C l a s s i c a l d y n a mi c s §4 . A c c e l e r a t i n g u n i v e r s e §5 . Wa v e f u n c t i o n o f t h e U n i v e r s e §6 . Wi g n e r f u n c t i o n o f t h e U n i v e r s e §7 . D i s c u s s i o n a n d O u t l o o k S t r i n g s a n d F i e l d s 2 0 1 9

  4. 4 §2 . T h e mo d e l T h e L i o u v i l l e s c a l a r mo d e l . A s s u mi n g , , Φ i s a f n c . o f t ↓ " C o s mo l o g i c a l " e f f e c t i v e L a g r a n g i a n S t r i n g s a n d F i e l d s 2 0 1 9

  5. 5 where , , , , . This "Cosmological" effective Lagrangian can also be obtained from various theories, including f(R) theory, higher-dim. theory with compactification (with flux, or cosmological const., or Ricci-non-flat int. space,). S t r i n g s a n d F i e l d s 2 0 1 9

  6. 6 §3 . C l a s s i c a l d y n a mi c s C o mmu t a t i v e C a s e L a g r a n g i a n ➡ H a mi l t o n i a n ➡ ➡ S t r i n g s a n d F i e l d s 2 0 1 9

  7. 7 We a r e c o n s i d e r i n g a " c o s mo l o g i c a l " mo d e l , s o R e me mb e r t h e H a mi l t o n i a n c o n s t r a i n t ! H =0 * s o l u t i o n * ( P , t , y a r e c o n s t a n t s ) 0 0 S t r i n g s a n d F i e l d s 2 0 1 9

  8. 8 Noncommutative Case H a mi l t o n i a n : P o i s s o n b r a c k e t s : H a mi l t o n ' s e q u a t i o n s : S t r i n g s a n d F i e l d s 2 0 1 9

  9. 9 * s o l u t i o n * H θ =0 s a t i s f y i n g t h e c o n s t r a i n t w h i c h i s o r i g i n a l l y f o u n d b y S t r i n g s a n d F i e l d s 2 0 1 9

  10. 1 0 Noncommtativity from Commutative variables Let us identify: ρ: a n a r b i t r a r y c o n s t a n t . T h e n , Hamilton's equations r e c o v e r s t h e s a me e q u a t i o n s f o r X , Y , Π X , Π Y , a n d t h e s a me s o l u t i o n s , f o r a n y ρ. S t r i n g s a n d F i e l d s 2 0 1 9

  11. 1 1 §4 . A c c e l e r a t i n g u n i v e r s e , I f > 0 , e x p a n s i o n i s a c c e l e r a t i n g . U > 0 U < 0 r e d c u r v e s : , b l u e c u r v e s : S t r i n g s a n d F i e l d s 2 0 1 9

  12. 1 2 §5 . Wa v e f u n c t i o n o f t h e U n i v e r s e T o o b t a i n Wh e e l e r - D e Wi t t e q u a t i o n ( f o r t h e mi n i s u p e r s p a c e ) , r e p l a c e mo me n t a a s a n d . E x p r e s s WD W e q . i n N o n c o mmu t a t i v e c a s e b y c o mmu t a t i v e v a r i a b l e s : E X : C o n f i r m ! N o t e t h a t i f ρ =- θ , Y ! = y S t r i n g s a n d F i e l d s 2 0 1 9

  13. 1 3 Now, WDW eq. of Noncommutative Quantum Cosmology becomes: T h e s o l u t i o n o f t h e WD W e q . w h e r e w i t h a n d We a r e i n t e r e s t e d i n , i n s t e a d o f ! ( We w a n t t o s e e s o me c o r r e s p o n d e n c e w i t h c l a s s . s o l . ) S t r i n g s a n d F i e l d s 2 0 1 9

  14. 1 4 if ρ=-θ , ← common variable both for C & NC Y =y then . Thus, for a wave packet peaking around , ν~P we can regard approximately. H e r e a f t e r , w e c o n s i d e r ν ↑ ↑ ↑ (rectangular amplitude) S t r i n g s a n d F i e l d s 2 0 1 9

  15. 1 5 U>0 θ=0 θ=0.1 θ=-0.1 bold curves indicate classical solutions! S t r i n g s a n d F i e l d s 2 0 1 9

  16. 1 6 U<0 θ=0 θ=0.1 θ=-0.1 bold curves indicate classical solutions! S t r i n g s a n d F i e l d s 2 0 1 9

  17. 1 7 §6 . Wi g n e r f u n c t i o n o f t h e U n i v e r s e F o r a w a v e f u n c t i o n , t h e Wi g n e r f u n c t i o n i s d e f i n e d a s : p r o p e r t i e s : w h e r e i s t h e F o u r i e r t r a n s f o r m o f . F o r o u r w a v e f u n c t i o n : S t r i n g s a n d F i e l d s 2 0 1 9

  18. 1 8 I t s F o u r i e r t r a n s f o r m: O u r i d e a : d e f i n e a n d i n t e g r a t e o u t Χ . w h e r e S t r i n g s a n d F i e l d s 2 0 1 9

  19. 1 9 Check and Confirm our idea C o mp a r e w i t h t h e F o u r i e r t r a n s f o r m o f t h e d e n s i t y o b t a i n e d i n t h e p r e v i o u s s e c t i o n : S t r i n g s a n d F i e l d s 2 0 1 9

  20. 2 0 U>0 θ=0 θ=0.1 θ=-0.1 a l mo s t i n d i s t i n g u i s h a b l e S t r i n g s a n d F i e l d s 2 0 1 9

  21. 2 1 U<0 θ=0 θ=0.1 θ=-0.1 a l mo s t i n d i s t i n g u i s h a b l e S t r i n g s a n d F i e l d s 2 0 1 9

  22. 2 2 §7 . D i s c u s s i o n a n d O u t l o o k ● A N o n C o mmu t a t i v e ( N C ) d e f o r ma t i o n o f t h e mi n i s u p e r s p a c e v a r i a b l e s i s s t u d i e d b y me a n s o f a n i n t e g r a b l e mo d e l . I t s a n a l y t i c a l s o l u t i o n s a r e o b t a i n e d i n c l a s s i c a l a n d q u a n t u m c o s mo l o g y . ● We s h o w e d t h a t t h e p e a k o f t h e w a v e p a c k e t r e p r o d u c e s t h e c l a s s i c a l t r a j e c t o r y b y u s i n g e x a c t s o l u t i o n s w i t h a n i n t e r p r e t a t i o n o f t h e N C v a r i a b l e s i n t h e p r e s e n t mo d e l . ● We p r o p o s e d a n e w p r o b a b i l i t y d i s t r i b u t i o n i n N C q u a n t u m c o s mo l o g y c o n s t r u c t e d f r o m t h e Wi g n e r f u n c t i o n . I t s v a l i d i t y i n t h e p r e s e n t s o l v a b l e mo d e l i s c o n f i r me d n u me r i c a l l y . S t r i n g s a n d F i e l d s 2 0 1 9

  23. 2 3 ● I n f u t u r e s t u d y , w e w i l l i n v e s t i g a t e g e n e r a l N C c o s mo l o g y b y u s i n g t h e p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n . G e n e r a l d e f o r ma t i o n s o f mi n i s u p e r s p a c e v a r i a b l e s s h o u l d b e s t u d i e d f u r t h e r . ● T h e mo d e l w i t h a p h a n t o m s c a l a r f i e l d a n d / o r a p h a n t o m g a u g e f i e l d ma y a l s o b e w o r t h s t u d y i n g i n t h e c o n t e x t o f N C c o s mo l o g y . S t r i n g s a n d F i e l d s 2 0 1 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend