about least squares type approach to address direct and
play

About Least-squares type approach to address direct and - PowerPoint PPT Presentation

About Least-squares type approach to address direct and controllability problems A RNAUD M NCH Universit Blaise Pascal - Clermont-Ferrand - France Chambery, June 15-18 , 2015 joint work with P ABLO P EDREGAL (Ciudad Real, Spain) Introduction


  1. About Least-squares type approach to address direct and controllability problems A RNAUD M ÜNCH Université Blaise Pascal - Clermont-Ferrand - France Chambery, June 15-18 , 2015 joint work with P ABLO P EDREGAL (Ciudad Real, Spain)

  2. Introduction (the linear heat eq. to fix ideas) ω ⊂ Ω ⊂ R N , N ≥ 1, a ∈ C 1 (Ω , R + ∗ ) , d ∈ L ∞ ( Q T ) , T > 0, Q T = Ω × ( 0 , T ) , q T = ω × ( 0 , T ) , Γ T := ∂ Ω × ( 0 , T ) Ly ≡ y t − ∇ · ( a ( x ) ∇ y ) + dy = v 1 ω , 8 Q T in > < y = 0 , (1) on Γ T > y ( · , 0 ) = y 0 , Ω . : in ( y 0 ∈ L 2 (Ω) , v ∈ L 2 ( q T )) = ⇒ y ∈ C 0 ([ 0 , T ]; L 2 (Ω)) ∩ L 2 ( 0 , T ; H 1 0 (Ω)) . ∃ v ∈ L 2 ( q T ) s.t. y ( · , T ) = 0 Null controllability - ∀ T > 0 , ω ⊂ Ω , (F URSIKOV -I MANUVILOV ’96, R OBBIANO -L EBEAU ’95, etc) Control of minimal L 2 - norm- 8 min J ( y , v ) := � v � 2 C ( y 0 , T ) over L 2 ( q T ) < (2) C ( y 0 , T ) = { ( y , v ) : v ∈ L 2 ( q T ) , y solves (1) and satisfies y ( T , · ) = 0 } :

  3. Introduction (the linear heat eq. to fix ideas) ω ⊂ Ω ⊂ R N , N ≥ 1, a ∈ C 1 (Ω , R + ∗ ) , d ∈ L ∞ ( Q T ) , T > 0, Q T = Ω × ( 0 , T ) , q T = ω × ( 0 , T ) , Γ T := ∂ Ω × ( 0 , T ) Ly ≡ y t − ∇ · ( a ( x ) ∇ y ) + dy = v 1 ω , 8 Q T in > < y = 0 , (1) on Γ T > y ( · , 0 ) = y 0 , Ω . : in ( y 0 ∈ L 2 (Ω) , v ∈ L 2 ( q T )) = ⇒ y ∈ C 0 ([ 0 , T ]; L 2 (Ω)) ∩ L 2 ( 0 , T ; H 1 0 (Ω)) . ∃ v ∈ L 2 ( q T ) s.t. y ( · , T ) = 0 Null controllability - ∀ T > 0 , ω ⊂ Ω , (F URSIKOV -I MANUVILOV ’96, R OBBIANO -L EBEAU ’95, etc) Control of minimal L 2 - norm- 8 min J ( y , v ) := � v � 2 C ( y 0 , T ) over L 2 ( q T ) < (2) C ( y 0 , T ) = { ( y , v ) : v ∈ L 2 ( q T ) , y solves (1) and satisfies y ( T , · ) = 0 } :

  4. Introduction (the linear heat eq. to fix ideas) ω ⊂ Ω ⊂ R N , N ≥ 1, a ∈ C 1 (Ω , R + ∗ ) , d ∈ L ∞ ( Q T ) , T > 0, Q T = Ω × ( 0 , T ) , q T = ω × ( 0 , T ) , Γ T := ∂ Ω × ( 0 , T ) Ly ≡ y t − ∇ · ( a ( x ) ∇ y ) + dy = v 1 ω , 8 Q T in > < y = 0 , (1) on Γ T > y ( · , 0 ) = y 0 , Ω . : in ( y 0 ∈ L 2 (Ω) , v ∈ L 2 ( q T )) = ⇒ y ∈ C 0 ([ 0 , T ]; L 2 (Ω)) ∩ L 2 ( 0 , T ; H 1 0 (Ω)) . ∃ v ∈ L 2 ( q T ) s.t. y ( · , T ) = 0 Null controllability - ∀ T > 0 , ω ⊂ Ω , (F URSIKOV -I MANUVILOV ’96, R OBBIANO -L EBEAU ’95, etc) Control of minimal L 2 - norm- 8 min J ( y , v ) := � v � 2 C ( y 0 , T ) over L 2 ( q T ) < (2) C ( y 0 , T ) = { ( y , v ) : v ∈ L 2 ( q T ) , y solves (1) and satisfies y ( T , · ) = 0 } :

  5. Minimal L 2 norm control using duality [Glowinski-Lions 94’] φ T ∈ H J ⋆ ( φ T ) , J ⋆ ( φ T ) := 1 Z Z φ 2 dxdt + inf inf φ ( 0 , · ) y 0 dx ( y , v ) ∈C ( y 0 , T ) J ( y , v ) = − 2 q T Ω where φ solves the backward system ( L ⋆ φ ≡ − φ t − ∇ · ( a ( x ) ∇ φ ) + d φ = 0 Q T = ( 0 , T ) × Ω , φ = 0 Σ T = ( 0 , T ) × ∂ Ω , φ ( T , · ) = φ T Ω . H -completion of D (Ω) with respect to the norm « 1 / 2 „Z φ 2 ( t , x ) dxdt � φ T � H = . q T From the observability inequality C ( T , ω ) � φ ( 0 , · ) � 2 L 2 (Ω) ≤ � φ T � 2 ∀ φ T ∈ L 2 (Ω) , H J ⋆ is coercive on H . The control is given by v = φ X ω on Q T .

  6. Minimal L 2 norm control using duality [Glowinski-Lions 94’] φ T ∈ H J ⋆ ( φ T ) , J ⋆ ( φ T ) := 1 Z Z φ 2 dxdt + inf inf φ ( 0 , · ) y 0 dx ( y , v ) ∈C ( y 0 , T ) J ( y , v ) = − 2 q T Ω where φ solves the backward system ( L ⋆ φ ≡ − φ t − ∇ · ( a ( x ) ∇ φ ) + d φ = 0 Q T = ( 0 , T ) × Ω , φ = 0 Σ T = ( 0 , T ) × ∂ Ω , φ ( T , · ) = φ T Ω . H -completion of D (Ω) with respect to the norm « 1 / 2 „Z φ 2 ( t , x ) dxdt � φ T � H = . q T From the observability inequality C ( T , ω ) � φ ( 0 , · ) � 2 L 2 (Ω) ≤ � φ T � 2 ∀ φ T ∈ L 2 (Ω) , H J ⋆ is coercive on H . The control is given by v = φ X ω on Q T .

  7. Minimal L 2 norm control using duality [Glowinski-Lions 94’] φ T ∈ H J ⋆ ( φ T ) , J ⋆ ( φ T ) := 1 Z Z φ 2 dxdt + inf inf φ ( 0 , · ) y 0 dx ( y , v ) ∈C ( y 0 , T ) J ( y , v ) = − 2 q T Ω where φ solves the backward system ( L ⋆ φ ≡ − φ t − ∇ · ( a ( x ) ∇ φ ) + d φ = 0 Q T = ( 0 , T ) × Ω , φ = 0 Σ T = ( 0 , T ) × ∂ Ω , φ ( T , · ) = φ T Ω . H -completion of D (Ω) with respect to the norm « 1 / 2 „Z φ 2 ( t , x ) dxdt � φ T � H = . q T From the observability inequality C ( T , ω ) � φ ( 0 , · ) � 2 L 2 (Ω) ≤ � φ T � 2 ∀ φ T ∈ L 2 (Ω) , H J ⋆ is coercive on H . The control is given by v = φ X ω on Q T .

  8. N = 1 - L 2 ( 0 , 1 ) -norm of the HUM control with respect to time Hugeness of H : H − s ⊂ H for any s ≥ 0 = ⇒ Ill-posedness 1 0.8 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t Figure: y 0 ( x ) = sin ( π x ) - T = 1 - ω = ( 0 . 2 , 0 . 8 ) - t → � v ( · , t ) � L 2 ( 0 , 1 ) in [ 0 , T ] Remedies via Carleman approach and convergence results in [Fernandez-Cara, Münch, 2011-2014]

  9. Least-squares approach We define the non-empty set  0 (Ω)); u ′ ∈ L 2 ( 0 , T , H − 1 (Ω)) , ( u , f ); u ∈ C ([ 0 , T ]; L 2 (Ω)) ∩ L 2 ( 0 , T ; H 1 A = ff u ( · , 0 ) = u 0 , u ( · , T ) = 0 , f ∈ L 2 ( q T ) and find ( u , f ) ∈ A solution of the heat eq. ! For any ( u , f ) ∈ A , we define the "corrector" v = v ( u , f ) ∈ H 1 ( Q T ) solution of the Q T - elliptic problem 8 „ « u t − ∇ · ( a ( x ) ∇ u ) + du − f 1 ω = 0 , − v tt − ∇ · ( a ( x ) ∇ v ) + ( x , t ) ∈ Q T , > > > < v t = 0 , x ∈ Ω , t ∈ { 0 , T } > > > v = 0 , : x ∈ Σ T . (3)

  10. Least-squares approach We define the non-empty set  0 (Ω)); u ′ ∈ L 2 ( 0 , T , H − 1 (Ω)) , ( u , f ); u ∈ C ([ 0 , T ]; L 2 (Ω)) ∩ L 2 ( 0 , T ; H 1 A = ff u ( · , 0 ) = u 0 , u ( · , T ) = 0 , f ∈ L 2 ( q T ) and find ( u , f ) ∈ A solution of the heat eq. ! For any ( u , f ) ∈ A , we define the "corrector" v = v ( u , f ) ∈ H 1 ( Q T ) solution of the Q T - elliptic problem 8 „ « u t − ∇ · ( a ( x ) ∇ u ) + du − f 1 ω = 0 , − v tt − ∇ · ( a ( x ) ∇ v ) + ( x , t ) ∈ Q T , > > > < v t = 0 , x ∈ Ω , t ∈ { 0 , T } > > > v = 0 , : x ∈ Σ T . (3)

  11. Least-squares approach (2) Theorem u is a controlled solution of the heat eq. by the control function f 1 ω ∈ L 2 ( q T ) if and only if ( u , f ) is a solution of the extremal problem ( u , f ) ∈A E ( u , f ) := 1 ZZ ( | v t | 2 + a ( x ) |∇ v | 2 ) dx dt . inf (4) 2 Q T Proof. = From the null controllability of the heat eq., the extremal problem is well-posed in ⇐ the sense that the infimum, equal to zero, is reached by any controlled solution of the heat eq. (the minimizer is not unique). ⇒ Conversely, we check that any minimizer of E is a solution of the (controlled) heat = eq.: We define the vector space  0 (Ω)); u ′ ∈ L 2 ( 0 , T , H − 1 (Ω)) , ( u , f ); u ∈ C ([ 0 , T ]; L 2 (Ω)) ∩ L 2 ( 0 , T ; H 1 A 0 = ff u ( · , 0 ) = u ( · , T ) = 0 , x ∈ Ω , f ∈ L 2 ( q T )

  12. Least-squares approach (2) Theorem u is a controlled solution of the heat eq. by the control function f 1 ω ∈ L 2 ( q T ) if and only if ( u , f ) is a solution of the extremal problem ( u , f ) ∈A E ( u , f ) := 1 ZZ ( | v t | 2 + a ( x ) |∇ v | 2 ) dx dt . inf (4) 2 Q T Proof. = From the null controllability of the heat eq., the extremal problem is well-posed in ⇐ the sense that the infimum, equal to zero, is reached by any controlled solution of the heat eq. (the minimizer is not unique). ⇒ Conversely, we check that any minimizer of E is a solution of the (controlled) heat = eq.: We define the vector space  0 (Ω)); u ′ ∈ L 2 ( 0 , T , H − 1 (Ω)) , ( u , f ); u ∈ C ([ 0 , T ]; L 2 (Ω)) ∩ L 2 ( 0 , T ; H 1 A 0 = ff u ( · , 0 ) = u ( · , T ) = 0 , x ∈ Ω , f ∈ L 2 ( q T )

  13. Least-squares approach (2) Theorem u is a controlled solution of the heat eq. by the control function f 1 ω ∈ L 2 ( q T ) if and only if ( u , f ) is a solution of the extremal problem ( u , f ) ∈A E ( u , f ) := 1 ZZ ( | v t | 2 + a ( x ) |∇ v | 2 ) dx dt . inf (4) 2 Q T Proof. = From the null controllability of the heat eq., the extremal problem is well-posed in ⇐ the sense that the infimum, equal to zero, is reached by any controlled solution of the heat eq. (the minimizer is not unique). ⇒ Conversely, we check that any minimizer of E is a solution of the (controlled) heat = eq.: We define the vector space  0 (Ω)); u ′ ∈ L 2 ( 0 , T , H − 1 (Ω)) , ( u , f ); u ∈ C ([ 0 , T ]; L 2 (Ω)) ∩ L 2 ( 0 , T ; H 1 A 0 = ff u ( · , 0 ) = u ( · , T ) = 0 , x ∈ Ω , f ∈ L 2 ( q T )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend