high frequency analysis of periodically driven quantum
play

High-frequency analysis of periodically driven quantum system with - PowerPoint PPT Presentation

High-frequency analysis of periodically driven quantum system with slowly varying amplitude Viktor Novi enko 2017 Zakopane, Poland Main message i t H t , t t t


  1. High-frequency analysis of periodically driven quantum system with slowly varying amplitude Viktor Novi č enko 2017 Zakopane, Poland

  2. Main message        φ  ω φ  i t H t , t t  t     ω π ω   periodic dependence on the first argument: H t 2 , t H t , t ω  any other characteristic energies of the system         φ φ   i t H t t  eff t V. Novičenko, E. Anisimovas, G. Juzeliūnas, Phys. Rev. A 95 , 023615 (2017) Motivation shaken optical lattice R. Desbuquois, M. Messer, F. Görg, K. Sandholzer, G. Jotzu, T. Esslinger, arXiv:1703.07767 (2017)

  3. Extension of the space Let us study whole family of the solutions:          θ  π φ  ω  θ φ initial conditions:  0 , 2 i t H t , t t θ θ  t     φ  φ t t θ  π θ 2 init init   Hamiltonian acts on a Hilbert space H ω  θ H t , t Introduce the space T of θ - periodic functions Construct the space L=H T      ω t Apply unitary transformation U exp    θ      Orthonormal basis of the space T      ω  θ † †   K U HU i U U i H , t  θ e in  θ n          ω   m n  K n n 1 n m H t n     n m , n where the Fourier expansion of the Hamiltonian         θ ,  θ l il H t H t e   l

  4. “Kamiltonian” matrix                       ω     H 0 1 2 3  1 H t t H t H t                    H 1 H 0 1 2  t t H t H t    K t                  H 2 H 1 1  ω t t H 0 H t   t 1                   ω H 3  H 2 H 1 0   t t t H t 2 1    

  5. Floquet band structure of the “Kamiltonian” operator

  6. Block diagonalization of the “Kamiltonian”                        ω † †   K t D t K t D t i D t D t n H t n n D eff   n         ω   H eff t 1 0 0 0    H eff t  0 0 0    K D t    ω 0 0 0   H eff t 1     ω   H t 2 1  0 0 0 eff    

  7. High-frequency expansion                                    ω      ω 3 3 D t n 1 n D t D t O H t H t H t H t O 1 2 eff eff 0 eff 1 eff 2   n                     ω † †   D t K t D t i D t D t n H t n n eff   n    0 H H   eff 0    1      m H   m H H ,   ω eff 1   m 1                                   m 0 m  m m m m n n 1 H , H , H i H , H H , H , H       H     eff 2  ω 2 2   2 m 3 mn     m 0 n 0 , m        φ  ω φ  Our original problem: i t H t , t t  t           φ  ω ω φ † t U t , t U t , t U t , t t fin Micro fin fin eff fin init Micro init init init        χ  χ  i t H t t  eff t

  8. High-frequency expansion                                    ω      ω 3 3 D t n 1 n D t D t O H t H t H t H t O 1 2 eff eff 0 eff 1 eff 2   n                     ω † †   D t K t D t i D t D t n H t n n eff   n     0 0 H H   eff 0     1 0      m H   m H H ,   ω eff 1   m 1                                   m 0 m m m m m n n  1  H , H , H i H , H  H , H , H     H      ω eff 2 2 2  2 m 3 mn      m 0 n 0 , m        φ  ω φ  Our original problem: i t H t , t t  t           φ  ω ω φ † t U t , t U t , t U t , t t fin Micro fin fin eff fin init Micro init init init        χ  χ  i t H t t  eff t

  9. Spin in an oscillating magnetic field The system Hamiltonian:       ω  F  ω H t , t g B t cos t F The non-zero Fourier components:        g       F  1 1 F H t H t B t 2 The effective Hamiltonian is non-zero only due to “slow” time derivative:           i      A      1 1 H t H t H , H B   ω eff eff 2 2      2 2 ω  2   where we introduce the geometric matrix valued non-Abelian vector potential A g F B F The effective evolution:   t   fin   i T       U t , init t exp A d B t eff fin      t init    B  ϕ If and performs rotation in a plane by an angle B t const     2 2   i g B B B ϕ   γ  γ  ϕ  F U n , exp F n , where and n   ϕ ϕ ω  eff    2  4 B B

  10. Numerical demonstration for a spin ½             Magnetic field amplitude: B t B e cos t e sin t z y        φ    Wave function: t c t c t         c t 1 , c t 0   init init  l 10 rotations

  11. The end

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend