a very compact co 2 absorption
play

A VERY COMPACT CO 2 ABSORPTION- DESORPTION PLANT Asbjrn Strand, Kari - PowerPoint PPT Presentation

A VERY COMPACT CO 2 ABSORPTION- DESORPTION PLANT Asbjrn Strand, Kari Forthun, Torleif Madsen, FTG Dag Eimer, John Arild Svendsen, USN yvind Torvanger, Arild Wik, CMR Prototech Jiru Ying, Sintef Tel-Tek Who? We do PROCESS INTENSIFICATION Two


  1. A VERY COMPACT CO 2 ABSORPTION- DESORPTION PLANT Asbjørn Strand, Kari Forthun, Torleif Madsen, FTG Dag Eimer, John Arild Svendsen, USN Øyvind Torvanger, Arild Wik, CMR Prototech Jiru Ying, Sintef Tel-Tek

  2. Who?

  3. We do PROCESS INTENSIFICATION Two defining statements: • Size reduction by two orders of magnitude • Eliminate equipment item by combining functions

  4. Absorption-Desorption Plant Impact - 1 CO 2 depleted gas CO 2 Absorber Units of flowsheet Overhead Wash water subjected to condenser process Lean solution intensification (PI) within red border. Stripper Separator Cooler Two separate units: • CFA Feed Reflux gas pump • RDW Steam Rich solution Economiser Pump Reboiler Condensate Pump

  5. Absorption-Desorption Plant Impact - 2 RDW: Rotating Desorber Wheel << CFA: Cross-Flow Absorber Solvent (absorbent) neutral, any liquid may be used

  6. Desorber Skid – RDW Test Results • 50-200 kg/h CO2 stripped • Solvent flow 1000-2500 kg/h • 30wt% - 85 wt% MEA • Steam pressure <8 bara • < 3 bar ΔP to process • Leading to CO2 delivered <5 bar • Specific desorption rate: 200 kmol/m3.h • Conventional design: 2.4 kmol/m3.h • Ratio RDW/conventional: >80

  7. Present State of Development

  8. Research Approach • Developed from basic principles: • Measuring fundamental properties and kinetic data • Modelling from first principles to the exent possible • CFD used for fluid flow analysis • Using model to interprete small scale tests • Developing empirical model • Contact area gas/liquid plus plus • Verification of model and design in pilot plant

  9. FUNDAMENTALS PREDICTION MATHEMATICS & SCALE-UP HARDWARE MEASUREMENTS CHARACTERISATION REGRESSION

  10. Model Concept 𝑝 𝐹 ∆𝑑 𝑂 𝐷𝑃 2 = 𝑏 𝑥𝑓𝑢 𝑙 𝑀 dr 𝐹 = 𝐸 𝐷𝑃 2 𝑙 2 𝐵𝑛𝑗𝑜𝑓 r 𝑝 𝑙 𝑀 𝑂 𝐷𝑃 2 = 𝑏 𝑥𝑓𝑢 𝐸 𝐷𝑃 2 𝑙 2 𝐵𝑛𝑗𝑜𝑓 ∆𝑑

  11. One Stage, Small Scale CFA Test Rig

  12. 3C – Cross-Flow Absorber Concept MIX Reduced pressure drop • (Relative to classic «Higee») • Better than co-current • May be «staged» • Approaching counter-curren t • HOLLOW AXLE MIX Robust design • Horizontal axis equally possible • Modelled! •

  13. The CFA Small Scale Test Rig Results 50% Packing_1 30wt% MEA, 40C Packing_8, 30wt% MEA, 40C 40% CO 2 capture rate Packing_8_PZ 30wt%,44C 30% 20% 10% 0% 0 5 10 15 20 25 30 L (Lpm)

  14. RDW principle • MT & HT sections rotate REBOILER SECTION CO 2 EXIT RPB SECTION • Concentric sections • Counter-current LIQUID FEED • Pressurised STEAM IN • Active section CONDENSATE • id/od 170/650 mm OUT • Length 75 mm LEAN LIQUID OUT

  15. RDW results Liquid flow 1000 - 2500 kg/h • MEA concentrations 35 – 85 % wt • CO 2 desorbed <180 kg/h • Temperatures 120 – 160 ᵒ C • DERIVED DATA: Reboiler duty*: 2.4 – 3.6 MJ/kg CO 2 • Volume specific CO 2 desorption: <250 kmol CO 2 /(m3.h) • One study of a conventional plant: 2.4 • * Accounting for pressure of CO2 and reduced compression power

  16. Salient Data for Pilot Plant CFA • 4 sections available • Inner/outer diameter 300/800 mm • Height 300 mm • Packing: Wound mesh • Gas flow cross section: 0.44 m2 • <600 rpm RDW • Axial length 75 mm • Inner/outer diameter 250/650 mm • <900 rpm • Recovery of kinetic energy of stripped absorbent

  17. Data from CFA Pilot Plant CO2 Liquid Gas CO2 Capture CFA loading flow flow inlet of CO2 out Lpm kg/h rpm vol% % mol/mol 31.8 2750 450 4.2 86 0.18 9.4 27.6 1150 550 96 0.24 Specific absorption rate (kmol/m3.h) Conventional 0.99 CFA data are initial, CFA 32 no optimisation. Ratio 32 70 % wt MEA

  18. Model of a 3C 100kt/a Plant

  19. Compact Low weight Reduction in tag numbers VANTAGE Less «secondary steel» POINTS Lower footprint Shop fabrication Elements of mass production Viscous liquid handled

  20. TCM Mongstad The old Homenkollen Skijump 3C in industrial scale

  21. dag@eimer.no THANK YOU! CLOSE TO INDUSTRY www.co2-lab.no

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend