a transient event
play

a Transient Event? Frederick Meyer, 1 Daniel Forchheimer, 2 Arne - PowerPoint PPT Presentation

Is Partial Slip Under Transverse Oscillatory Loading a Transient Event? Frederick Meyer, 1 Daniel Forchheimer, 2 Arne Langhoff, 1 Diethelm Johannsmann* 1 1 Institute of Physical Chemistry, TU Clausthal, Germany 2 Intermodulation Products AB,


  1. Is Partial Slip Under Transverse Oscillatory Loading a Transient Event? Frederick Meyer, 1 Daniel Forchheimer, 2 Arne Langhoff, 1 Diethelm Johannsmann* 1 1 Institute of Physical Chemistry, TU Clausthal, Germany 2 Intermodulation Products AB, Sweden - High-frequency nonlinear contact mechanics - Intermodulation products - Sudden impacts - Crystallization • High-frequency micromechanics: Sylvia Hanke, Rebekka König, Judith Petri, Jana Vlachová, Frederick Meyer • Intermodulation: Daniel Forchheimer • QCM work in general : Arne Langhoff 1

  2. The 2 nd -Generation Quartz Crystal Microbalance I ~ U ~ quartz plate electrodes f = f res : large amplitude of motion  large current 8 conductance G [mS] unloaded • Shifts in frequency and bandwidth : D f , DG 6 loaded G • many overtones 4 D f ( n ), DG ( n ) Df • dependence on amplitude 2 D f ( n, u 0 ), DG ( n , u 0 ) G 0 • Higher harmonics 11.999 12.000 12.001 frequency [MHz] • Intermodulation products 2

  3. Small Load Approximation   G Complex Resonance Frequency f f i r r conductance G(f) -1 f r current I(t)   Fourier p r exp 2 if t Transform f r G (2 pG ) -1 frequency time   ˆ Z " load impedanc e" Small-load approximation L ˆ v D   ˆ ˆ stres f i i s   Z ˆ p p ˆ L v velo city f Z Z v 0 q q    ˆ ^: c o mp lex amplitud e ( (t) = exp(i t) ) QCM: The Quartz Crystal periodic stress, Micro Stress -Balance in-phase, out-of-phase Mason, W.P., Piezoelectric Crystals and their Applications to Ultrasonics 1948 Pechhold, W Acustica 1959, 9, 48 Johannsmann, D., The Quartz Crystal Microbalance in Soft Matter Research, Springer 2014 Analogous equations exist in atomic force microscopy, valid if the perturbations are small 3

  4. Small Load Approximation Sauerbrey D  D ˆ f i inertial stress i i v m   p p ˆ f Z velocity Z v 0 q q  D D D  m :Mass per unit area of film f m          m Z / 2f :Mass per unit area of crystal f m  q q 0 q Stress might go back to viscous drag elastic forces , ... acoustic multilayers, interfackal high-frequency rheology  ˆ D  p f i area The stress can be averaged over area : ˆ f Z v 0 q N ˆ ˆ   ˆ F with F the periodic forc e Discrete objects: ar ea A     time  2 F t exp i t D  p f i N The force can be averaged over time : ˆ f Z A v 0 q QCM covers nonlinear force-displacement relations 4

  5. Stiffness of Sphere-Plate Contacts air or water added clamp deformation only glass spheres weight close to contact diameter Coating 1 or 2 mm   soft link, heavy sphere      P D  f N  p  f A Z 0 q Elastic Load SiO spheres r= 2.2 mm 300 200 D f   * air Hertz-Mindlin: 2 G a 100 water a : contact radius JKR Fits     1 2 1 2 1 0   1 2 : effective modu l us 0 1 2 3 * 4 G 4 G G 1 2 added weight [g] Vlachová, J.; König, R.; Johannsmann, D. Beilstein J. Nanotechnol. 2015, 6, 845. 5

  6. Contact Stiffness  Contact Strength Coulomb friction Quasi-static, force control: tangential stick-slip transition is an instability force strength: µ S F N µ D F N tangential displacement stiffness Oscillatory motion, strain control:  Partial slip not an instability tangential partial slip force gross slip tangential displacement stiffness 6

  7. Small Load Approximation Sauerbrey D  D ˆ f i inertial stress i i v m   p p ˆ f Z velocity Z v 0 q q  D D D  m :Mass per unit area of film f m          m Z / 2f :Mass per unit area of crystal f m  q q 0 q Stress might go back to viscous drag elastic forces , ... acoustic multilayers, QTM high-frequency polymer rheology  ˆ D  p f i area The stress can be averaged over area : ˆ f Z v 0 q N ˆ ˆ   ˆ F with F the periodic forc e Discrete objects: ar ea A     time  D  p 2 F t exp i t f i N time The force can be averaged over : ˆ f Z A v 0 q QCM covers nonlinear force-displacement relations 7

  8. The QCM and Nonlinear Response       D 2 t exp i t f i  p time The stress can be averaged over time : ˆ f Z v 0 q   Loads are small strain contr ol F(t) 1 1        u u cos t dt du 0   2  1 u u / 0 Stress and force can be averaged over displacement, u      D  f ~ F t cos i t time time   u u /     u 0     0 partial F u u , , F u u , ,   0 0 force   2  slip 1 u u / F  0 u     DG  ~ F t sin i t visco- time F    elastic         F u u , , F u u , ,   0 0 u displacement u D D G f , are weighted averages of friction l o op shape of friction loop uncertain Hanke, S .; Petri, J.; Johannsmann, D., PRE 2013, 032408 Johannsmann, D., Springer 2014 8

  9. Shape of Friction Loop? Data fit to Mindlin model force They might also be explained by a temperature-induced softening of the contact displace- ment This question can be answered with 3 rd harmonic generation force displace- ment Ghosh, S. K. et al. ; Biosensors & Bioelectronics 2011 , 29, 145 Berg, S.; DJ, Surface Science 2003 , 541, 225 9

  10. Partial Slip partial / total slip tangential slip stick force Cattaneo, C., Rendiconti dell' Academia Nationale dei Lincei 1938 Mindlin, R.D.; Deresiewicz H.: J. Appl. Mech. 1953 Johnson, K. L., Contact Mechanics 1985 displacement Savkoor, A. R. Tech. University Delft, 1987 Varenberg, M.; Etsion, I.; Halperin, G., Tribology Letters 2005 When transient:  Transition state between stick and slip, mixed lubrication, … When slow:  Contact aging, compaction, soil mechanics, granular media, … When oscillatory:  Fretting wear http://www.mr2oc.com/208-aef-engine-powertrain/455990-calling-m-e-s- fretting-failure-mode-clutch-hub-female-spline-e153-mr2-turbo-trans.html 10

  11. Partial Slip and Gross Slip added humidity weight diameter polymer film 50  275 µm (T g ~108 or 37°C ) amplitude of oscillation 0  20 nm Small spheres (d = 50 µm) 100 Hz 20 Hz soft substrate (T g ~ 37°C) Medium size spheres (140 µm) DG Partial Slip D f 100 Hz 20 Hz soft substrate (T g ~ 37°C) Gross Slip Large spheres (275 µm) 100 Hz 20 Hz hard substrate (T g ~ 108°C) 0 5 10 0 5 10 amplitude [nm] amplitude [nm] 11

  12. Partial Slip  Nonlinear Stress-Strain Relations Quantitative models for the force-displacement relation exist (but: quasi-static)  stick Stress in sliding zone follows Coulomb (  S = µp) p Cattaneo, C., Rendiconti dell' Academia Nationale dei Lincei 1938 Mindlin, R.D.; Deresiewicz H.: J. Appl. Mech. 1953  partial slip Stress in sliding zone constant (  S = const.) Cattaneo-Mindlin   S = µp Savkoor, A. R. Tech. University Delft, 1987 x partial slip Cattaneo-Mindlin  Savkoor force [a.u.] Savkoor  S = const =  0 F + u min F - F min -1 0 1 u/u max 12

  13. Partial Slip  Nonlinear Stress-Strain Relations  stick Cattaneo-Mindlin force [a.u.] Savkoor p F +  partial slip F - Cattaneo-Mindlin   S = µp x partial slip F min  Savkoor  S = const =  0 -1 0 1 u/u 0  Cattaneo-Mindlin   D f  N   D      f u 1 u Savkoor 100 Hz 0 p 0 D f 2  3µ F  A2n Z N q  N 4   DG   u u p p 0 0 2 Cattaneo-Mindlin A2n Z 9 µF DG q N 20 Hz Savkoor   2 0 5 10    N 5 u DG     D    0   f u 1 amplitude [nm] p    0 2 2 Cattaneo- A2 n Z 8 4 a     q 0 Mindlin 2    u Also: Leopoldes, J.; Jia, X., N 8   Savkoor DG    0  u PRL 2010 p p  0 2 2 A2n Z 6  2 a  q 0 amplitude, u 0 13

  14. Multifrequency Lockin Analysis Signal [a.u.] Intermodulation Products AB, Sweden real imag A) Frequency combs A fast (milliseconds) way to probe resonances 42 freqs, fit Lorentzians  D f, DG (no calibration required) 4991700 4992000 4992300 4992600 frequency [Hz] B) Intermodulation products linear Excite with 2 frequencies  beating signal (fast amplitude ramps) Nonlinearities  signals at f = 2f 1 – f 2 and 2f 2 – f 1 nonlinear  Fast  Signal resonantly enhanced, response function well understood C. Hutter et al. Phys. Rev. Lett. 2010 , 104, 050801  Calibration issues C) 2 nd and 3 rd Harmonic Generation  Excite at f, probe at 2f, 3f, etc… (also: determine background)  Signal not resonantly enhanced  Probes MHz dynamics 14

  15. Partial Slip air or water added glass spheres weight diameter Coating 1 or 2 mm D f [Hz] reference 200 tripod tripod + 2.7g 0 0 DG [Hz]  Mindlin model works here -20 (does not always work)  There is a 3 rd harmonic signal -40  There is a weak 2 nd harmonic signal rd Intermodulation 9 3 (normal forces involved) 3  Here: 5 MHz (fundamental mode) Product x10 6 3 results are different on overtones  Strong intermodulation products 0 rd Harmonic x10 3 1.5 3 1.0 0.5 0.0 0 5 10 15 20 25 Apparent Amplitude [nm] 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend