a traceable block cipher
play

A Traceable Block Cipher Olivier Billet, Henri Gilbert Content - PowerPoint PPT Presentation

A Traceable Block Cipher Olivier Billet, Henri Gilbert Content Distribution Context M Context D K M C M E K D K Plaintext Ciphertext M D K Issues: s Key Redistribution (by traitors to pirate users) s Content Redistribution (not addressed


  1. A Traceable Block Cipher Olivier Billet, Henri Gilbert

  2. Content Distribution Context M Context D K M C M E K D K Plaintext Ciphertext M D K Issues: s Key Redistribution (by traitors to pirate users) s Content Redistribution (not addressed here) 1

  3. Traitor Tracing Definitions Context s Benny Chor, Amos Fiat, Moni Naor, 1994 Definitions s Each of the N users receives a personal key K j I K j enables user j to decrypt content I K j uniquely identifies user j s No coalition of k traitors will produce an untraceable key I allows a pirate to decrypt content I conceals all traitors' identities 2

  4. Traitor Tracing s Four Procedures Context I Key Generation Definitions I Encrypt I Decrypt I Tracing s Previous Constructions I Combinatorial Scheme [CFN 94, NP 98] headers O ( k ln N ) I Asymmetric Algorithm [BF 99] expansion O ( k ) 3

  5. Traceable Blockcipher Context Definitions s F K satisfies usual symmetric block cipher requirements Cipher s generation from the meta-key K of keys K j such that ≡ · · · ≡ F K j ≡ F K 1 ≡ · · · ≡ F K N F K s k -traceability requirement: an equivalent description produced from the knowledge of up to k equivalent descriptions F K j 1 , . . . , F K j k must reveal at least one of the identities j 1 , . . . , j k 4

  6. Operation Modes s Mode with control words: F K ≡ F K j Context H i Definitions H i S i H i S i F K j Cipher F K M i M i C i Modes E S i D S i C i decoder j s Simple mode: F − 1 K ≡ F K j M C M F − 1 F K j K 5

  7. C ∗ Scheme Matsumoto-Imai s parameters x 1 x 2 x n = x ∈ K n · · · Context I K = GF ( q ) q = 2 m Definitions I L ≃ K n S composition G is public Cipher L = K [ X ] /π n ( X ) a 1 a 2 a n · · · � a ∈ L Modes I (1 + q θ ) ⊥ ( q n − 1) C ∗ a �→ b = a 1+ q θ s public key is a set of n quadratic equations · · · b 1 b 2 b n � b ∈ L in the variables x i T s private key is ( S, T ) two invertible linear maps = y ∈ K n y 1 y 2 y n · · · s encrypt with G s decrypt with S − 1 ◦ g − 1 ◦ T − 1 6

  8. Underlying Problems s Solving systems of multivariate equations I find one solution ( x 1 , . . . , x n ) over a finite field K of Context { y i = P i ( x 1 , . . . , x n ) } i ∈ [1 ,n ] Definitions Cipher I Decision problem is NP-complete, even over GF (2) Modes I Patarin 1995 used structure of C ∗ to invert it C ∗ s IP: isomorphism of polynomials Comp. Prob. I given two sets of polynomials { P } and { Q } find bijective linear maps A and B such that B ◦ ( P 1 , . . . , P n ) ◦ A = ( Q 1 , . . . , Q m ) I IP is harder than IG I no polynomial algorithm is known [PGC, 1998] I relinearization attack for C ∗ degree 2 from [SK, 1999] 7

  9. Commuting Blocks Conducting Idea g 1 ◦ g 2 = g 2 ◦ g 1 x x Context Definitions s s Cipher g 1 g 2 u − 1 v − 1 Modes ≡ C ∗ u v Comp. Prob. g 2 g 1 Commuting t t y y u use a version of C ∗ with higher degree d > 2 g i : a �→ b = a 1+ q θ 1 + ... + q θd − 1 8

  10. Commuting Blocks Key Generation metakey user j S S Context g σ (1) g 1 G 1 ,j Definitions U − 1 g 2 1 ,j Cipher Modes C ∗ U i − 1 ,j σ Comp. Prob. g σ ( i ) g i G i,j U − 1 Commuting i,j U r − 1 ,j g σ ( r ) g r G r,j T T F K F K j 9

  11. Parameters Example user j s q = 2 16 K = GF ( q ) Context S Definitions block size is 80 bits s n = 5 g σ (1) G 1 ,j Cipher s d = 4 U − 1 1 ,j Modes equations for G i,j have degree 4 C ∗ about 70 monomials per equation Comp. Prob. U i − 1 ,j computing G i,j is at most g σ ( i ) Commuting G i,j 435 multiplications in K U − 1 Parameters i,j 32 rounds s r = 32 F K j is about 14000 mult. in K U r − 1 ,j s size for F K j is 22 KB g σ ( r ) G r,j T 10 10 F K j

  12. Security as a Symmetric Cipher x Context S Definitions g 1 Cipher g i Modes F K C ∗ g r Comp. Prob. T Commuting y Parameters Security Input/Output observation must not allow s to recover F K s to interpolate F K s to distinguish from a random permutation 11 11

  13. Tracing One Traitor Potential Strategy S S g σ (1) g σ (1) G 1 Context G ′ 1 U − 1 U − 1 Definitions 1 1 Cipher Modes G ′ C ∗ 2 U i − 1 Comp. Prob. g σ ( i ) G i G ′ U − 1 Commuting k i Parameters Security U 1 Tracing g σ (2) G ′ U r − 1 k +1 g σ ( r ) U − 1 G r 2 T 12 12

  14. Tracing One Traitor Context u − 1 g i S S Definitions k − 1 g σ (1) g i G ′ u − 1 Cipher 1 1 G ′ π 1 Modes k C ∗ G ′ k + k ′ Comp. Prob. s step 1: guess g σ (1) Commuting u k − 1 G ′ g σ ( k ) Parameters k + k ′ +1 u − 1 k Security s step i : guess g σ ( i ) Tracing s σ is known 13 13

  15. Tracing several Traitors Context g σ j (1) g σ j ( i ) g σ j ( i +1) g σ j ( r ) Definitions Cipher Modes C ∗ g σ l (1) g σ l ( i ) g σ l ( i +1) g σ l ( r ) Comp. Prob. Commuting Parameters s t -collision: { σ j ( i ) } i ∈ [1 ,t ] = { σ l ( i ) } i ∈ [1 ,t ] Security Tracing g σ j (1) g σ j ( i ) g σ k ( i +1) g σ k ( r ) s inner values reveal one identity 14 14

  16. Conclusion s Properties Context I very low control word overhead: save bandwidth Definitions I good behavior with high number of traitors Cipher I good behavior with huge number of users: scalable Modes C ∗ I speed of symmetric block cipher Comp. Prob. I no black box yet Commuting s Security n IP for extended C ∗ with degree higher than 2 Parameters Security s Applications Tracing I White Box Cryptography I Other instantiations 15 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend