gr bner bases applications in cryptology
play

Grbner Bases. Applications in Cryptology Description of the Cipher - PowerPoint PPT Presentation

Grbner - Crypto J.-C. Faugre Plan Grbner bases: properties Grbner Bases. Applications in Cryptology Description of the Cipher Families Feistel cipher: FLURRY Feistel cipher modelling Jean-Charles Faugre Algorithms Buchberger


  1. Gröbner - Crypto J.-C. Faugère Plan Gröbner bases: properties Gröbner Bases. Applications in Cryptology Description of the Cipher Families Feistel cipher: FLURRY Feistel cipher modelling Jean-Charles Faugère Algorithms Buchberger and INRIA, Université Paris 6, CNRS Macaulay E¢cient Algorithms F 5 algorithm with partial support of Celar/DGA Zero dim solve Other strategies Substitution of 1 FSE 20007 - Luxembourg variable Several plaintexts Conclusion

  2. Gröbner - Crypto Goal: how Gröbner bases can be used to break J.-C. Faugère (block) ciphers ? Plan Gröbner bases: properties Description of the 1. Basic Properties of Gröbner Bases Cipher Families Feistel cipher: FLURRY Feistel cipher modelling Algorithms Buchberger and Macaulay E¢cient Algorithms F 5 algorithm Zero dim solve Other strategies Substitution of 1 variable Several plaintexts Conclusion

  3. Gröbner - Crypto Goal: how Gröbner bases can be used to break J.-C. Faugère (block) ciphers ? Plan Gröbner bases: properties Description of the 1. Basic Properties of Gröbner Bases Cipher Families Feistel cipher: FLURRY 2. Use the same benchmark during the talk: non-trivial Feistel cipher modelling iterated block ciphers from Algorithms "Block Ciphers Sensitive to Gröbner Basis Buchberger and Macaulay Attacks" , J. Buchmann, A. Pyshkin and R.-P. E¢cient Algorithms F 5 algorithm Weinmann, CT-RSA 2006 Zero dim solve Other strategies Substitution of 1 variable Several plaintexts Conclusion

  4. Gröbner - Crypto Goal: how Gröbner bases can be used to break J.-C. Faugère (block) ciphers ? Plan Gröbner bases: properties Description of the 1. Basic Properties of Gröbner Bases Cipher Families Feistel cipher: FLURRY 2. Use the same benchmark during the talk: non-trivial Feistel cipher modelling iterated block ciphers from Algorithms "Block Ciphers Sensitive to Gröbner Basis Buchberger and Macaulay Attacks" , J. Buchmann, A. Pyshkin and R.-P. E¢cient Algorithms F 5 algorithm Weinmann, CT-RSA 2006 Zero dim solve 3. E¢cient algorithms for computing Gröbner Bases Other strategies Substitution of 1 variable Several plaintexts Conclusion

  5. Gröbner - Crypto Goal: how Gröbner bases can be used to break J.-C. Faugère (block) ciphers ? Plan Gröbner bases: properties Description of the 1. Basic Properties of Gröbner Bases Cipher Families Feistel cipher: FLURRY 2. Use the same benchmark during the talk: non-trivial Feistel cipher modelling iterated block ciphers from Algorithms "Block Ciphers Sensitive to Gröbner Basis Buchberger and Macaulay Attacks" , J. Buchmann, A. Pyshkin and R.-P. E¢cient Algorithms F 5 algorithm Weinmann, CT-RSA 2006 Zero dim solve 3. E¢cient algorithms for computing Gröbner Bases Other strategies Substitution of 1 variable 4. Test di¤erent algorithms and strategies: Direct, Several plaintexts Substitution of some variables, several Conclusion plaintexts/ciphertexts.

  6. Gröbner - Crypto Properties of Gröbner bases I J.-C. Faugère K a …eld, K [ x 1 , . . . , x n ] polynomials in n variables. Plan Gröbner bases: Linear systems Polynomial equations properties 8 8 < l 1 ( x 1 , . . . , x n ) = 0 < f 1 ( x 1 , . . . , x n ) = 0 Description of the Cipher Families � � � � � � Feistel cipher: : : FLURRY l m ( x 1 , . . . , x n ) = 0 f m ( x 1 , . . . , x n ) = 0 Feistel cipher modelling Ideal generated by f i : Algorithms V = Vect K ( l 1 , . . . , l m ) Buchberger and I = Id ( f 1 , . . . , f m ) Macaulay E¢cient Algorithms Triangular/diagonal F 5 algorithm Gröbner basis of I basis of V Zero dim solve Other strategies Substitution of 1 variable De…nition (Buchberger) Several plaintexts Conclusion < admissible ordering (lexicographical, total degree, DRL) G � K [ x 1 , . . . , x n ] is a Gröbner basis of an ideal I if 8 f 2 I , exists g 2 G such that LT < ( g ) j LT < ( f )

  7. Gröbner - Crypto Properties of Gröbner bases II J.-C. Faugère Solving algebraic systems: Plan Computing the algebraic variety: K � L (for instance L = K Gröbner bases: properties the algebraic closure) Description of the Cipher Families Feistel cipher: FLURRY V L = f ( z 1 , . . . , z n ) 2 L n j f i ( z 1 , . . . , z n ) = 0 , i = 1 , . . . , m g Feistel cipher modelling Algorithms Buchberger and Macaulay E¢cient Algorithms Solutions in …nite …elds: F 5 algorithm We compute the Gröbner basis of G F 2 of Zero dim solve [ f 1 , . . . , f m , x 2 1 � x 1 , . . . , x 2 n � x n ] , in F 2 [ x 1 , . . . , x n ] . It is a Other strategies Substitution of 1 variable description of all the solutions of V F 2 . Several plaintexts Conclusion

  8. Gröbner - Crypto Properties of Gröbner bases III J.-C. Faugère Theorem Plan Gröbner bases: I V F 2 = ∅ ( no solution) i¤ G F 2 = [ 1 ] . properties I V F 2 has exactly one solution i¤ Description of the Cipher Families G F 2 = [ x 1 � a 1 , . . . , x n � a n ] where ( a 1 , . . . , a n ) 2 F n 2 . Feistel cipher: FLURRY Feistel cipher modelling Shape position: Algorithms Buchberger and If m � n and the number of solutions is …nite ( # V K < ∞ ), Macaulay E¢cient Algorithms then in general the shape of a lexicographical Gröbner basis: F 5 algorithm x 1 > � � � > x n : Zero dim solve Other strategies 8 Substitution of 1 h n ( x n )(= 0 ) > variable > > Several plaintexts < x n � 1 � h n � 1 ( x n )(= 0 ) Conclusion Shape Position . . > > . > : x 1 � h 1 ( x n )(= 0 )

  9. Gröbner - Crypto Feistel cipher: FLURRY I J.-C. Faugère Plan Gröbner bases: Flurry ( k , t , r , f , D ) the parameters used are: properties Description of the I k size of the …nite …eld K . Cipher Families Feistel cipher: I t is the size of the message/secret key and m = t FLURRY 2 the Feistel cipher modelling half size. Algorithms I r the number of rounds . Buchberger and Macaulay E¢cient Algorithms I f a non-linear mapping giving the S-Box of the round F 5 algorithm Zero dim solve function. Other strategies In practice: f ( x ) = f p ( x ) = x p or f ( x ) = f inv ( x ) = x k � 2 . Substitution of 1 variable Several plaintexts I D a m � m matrix describing the linear di¤usion Conclusion mapping of the round function (coe¢cients in K ).

  10. Gröbner - Crypto Feistel cipher: FLURRY II J.-C. Faugère We set L = [ l 1 , . . . , l m ] 2 K m and R = [ r 1 , . . . , r m ] the Plan left/right side of the current state. and K = [ k 1 , . . . , k m ] the Gröbner bases: secret key . properties We de…ne the round function Description of the ρ : K m � K m � K m ! K m � K m as Cipher Families Feistel cipher: FLURRY Feistel cipher modelling ρ ( L , R , K ) = ( R , D . T [ f ( r 1 + k 1 ) , . . . , f ( r m + k m )]) Algorithms Buchberger and Macaulay E¢cient Algorithms F 5 algorithm Zero dim solve The key schedule. from an initial secret key [ K 0 , K 1 ] (size Other strategies t = 2 m ) we compute subsequent round keys for Substitution of 1 variable 2 � i � r + 1 as follows: Several plaintexts Conclusion K i = D . T K i � 1 + K i � 2 + v i , i = 2 , 3 , . . . , ( r + 1 ) where v i are round constants.

  11. Gröbner - Crypto Feistel cipher: FLURRY III J.-C. Faugère Plan Gröbner bases: properties Description of the A plaintext [ L 0 , R 0 ] (size t ) is encrypted into a ciphertext Cipher Families Feistel cipher: ( L r , R r ) by iterating the round function ρ over r rounds: FLURRY Feistel cipher modelling Algorithms Buchberger and ( L i , R i ) = ρ ( L i � 1 , R i � 1 , K i � 1 ) for i = 1 , 2 , . . . , ( r � 1 ) Macaulay E¢cient Algorithms ( L r , R r ) = ρ ( L r � 1 , R r � 1 , K r � 1 ) + ( 0 , K r + 1 ) F 5 algorithm Zero dim solve Other strategies and L i = R i � 1 . Substitution of 1 variable Several plaintexts Conclusion

  12. Gröbner - Crypto Feistel cipher: algebraic attack. I J.-C. Faugère Algebraic attack: The encryption process can be described by very simple polynomial equations: introduce variables for Plan each round L j = [ x 1 , j , . . . , x m , j ] , R j = [ x m + 1 , j , . . . , x t , j ] and Gröbner bases: properties K j = [ k 1 , j , . . . , k m , j ] � ! F algebraic set of equations . Description of the Cipher Families Feistel cipher: plaintex: ~ p = L 0 [ R 0 FLURRY Feistel cipher for ciphertext: ~ c = L r + 1 [ R r + 1 of size t equations: modelling Algorithms secret key: ~ k = K 0 [ K 1 Buchberger and Macaulay E¢cient Algorithms F 5 algorithm Zero dim solve S ~ k ( ~ p , ~ c ) is the corresponding algebraic system Other strategies Substitution of 1 variable Several plaintexts p � ; In the following: if ~ p is explicitly known then we note ~ Conclusion p � , ~ c � ) hence we obtain S ~ k ( ~

  13. Gröbner - Crypto Feistel cipher: algebraic attack. II J.-C. Faugère Plan Gröbner bases: properties Theorem Description of the [Buchmann, Pyshkin, Weinmann]. If f ( x ) = x p , for an Cipher Families Feistel cipher: p � , ~ c � ) is already FLURRY appropriate variable order x i , j , k i , j then S ~ k ( ~ Feistel cipher modelling a Gröbner basis for a total degree ordering. Algorithms Buchberger and Macaulay E¢cient Algorithms F 5 algorithm Main problem : we are computing V K and not V K ! Zero dim solve Other strategies and many solutions: p m r Substitution of 1 variable Several plaintexts Conclusion

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend