a sundaram type bijection for so 2 k 1
play

A Sundaram type bijection for SO (2 k + 1): vacillating tableaux and - PowerPoint PPT Presentation

A Sundaram type bijection for SO (2 k + 1): vacillating tableaux and pairs consisting of a standard Young tableau and an orthogonal Littlewood-Richardson tableau Judith Jagenteufel 31 st Conference on Formal Power Series and Algebraic


  1. A Sundaram type bijection for SO (2 k + 1): vacillating tableaux and pairs consisting of a standard Young tableau and an orthogonal Littlewood-Richardson tableau Judith Jagenteufel 31 st Conference on Formal Power Series and Algebraic Combinatorics (FPSAC), Ljubljana, July 2 nd , 2019 1 3 1 1 � � , 2 4 2 2 5 1 Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

  2. Classical Schur-Weyl duality V ⊗ r ∼ � V GL ( λ ) ⊗ S ( λ ) = λ ⊢ r ℓ ( λ ) ≤ n as GL ( V ) × S r representations, V = C n . ◮ GL ( V ) acts diagonally and S r permutes tensor positions ◮ V GL ( λ ), S ( λ ) . . . irreducible representation of GL ( V ), S r Robinson-Schensted { 1 , . . . , n } r ↔ � � � SSYT( λ ) , SYT( λ ) λ ◮ SSYT( λ ), SYT( λ ) . . . (semi)standard Young tableaux Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

  3. Special orthogonal group branching rule V GL ( λ ) ↓ GL ( V ) SO ( V ) ∼ � c µ λ V SO ( µ ) = µ where c µ λ are multiplicities counted by orthogonal LR tableaux leads to V ⊗ r ∼ � � c µ � V SO ( µ ) ⊗ V SO ( µ ) ⊗ U ( r , µ ) = λ S ( λ ) = µ a partition λ ⊢ r µ a partition l ( λ ) ≤ n l ( µ ) ≤ n l ( µ ) ≤ n µ ′ 1 + µ ′ µ ′ 1 + µ ′ 2 ≤ n 2 ≤ n as SO ( n ) × S r representations. n = 2 k + 1 thus n odd ◮ V = C n . . . vector representation of SO ( n ) ◮ V SO ( µ ), S ( λ ) . . . irreducible representations of SO ( n ) and S r Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

  4. Our setting � � c µ � U ( r , µ ) = λ S ( λ ) λ Our main result: a bijection between � � vacillating tableaux ↔ orthogonal LRT, SYT that preserves descents. Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

  5. Standard Young tableaux 1 2 5 6 9 3 4 7 8 12 1013 Standard Young tableaux of shape λ ( SYT ( λ )): 1116 14 fillings of a Young diagram of shape λ with entries 15 { 1 , 2 , . . . , | λ |} , increasing in rows and columns 17 1 2 5 6 9 Descents 3 4 7 8 12 d is a descent if d + 1 is in a row below d 1013 1116 14 15 17 descent set { 2 , 6 , 9 , 10 , 12 , 13 , 14 , 16 } Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

  6. Vacillating tableaux - highest weight words ◮ Vacillating tableau : a sequence of partitions / Young diagrams ∅ = λ 0 , λ 1 , . . . , λ r , at most k rows, shape λ r ◮ λ i and λ i +1 differ in at most one cell ◮ λ i = λ i +1 only if k th row is non-empty ◮ Highest weight word : word w with letters in { 0 , ± 1 , . . . , ± k } , length r , weight (#1 − #( − 1) , . . . , # k − #( − k )), such that for every prefix w 1 , . . . , w j : ◮ # i − #( − i ) ≥ 0 ◮ # i − #( − i ) ≥ #( i + 1) − #( − i − 1) ◮ If the last position, w j = 0 then # k − #( − k ) > 0. Example ( k = 3) ( 1 , 3 , − 3 , − 1 , − 2 , − 1) 1 , 2 , − 2 , 1 , 1 , 2 , 2 , 1 , 3 , 0 , 2 , ∅ Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

  7. Descents of vacillating tableaux Vacillating tableaux a position i of w is a descent if there exists a path from w i to w i +1 in the crystal graph: 1 → 2 → · · · → k → 0 → − k → · · · → − 1 and w i w i +1 � = j ( − j ) if # j − #( − j ) = 0 in w 1 , . . . , w i − 1 . Example 6 7 8 9 1011121314151617 2 3 4 5 1011121314 16 1 8 3 4 7 1314 1011 descent set { 2 , 6 , 9 , 10 , 12 , 13 , 14 , 16 } Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

  8. Quasi symmetric expansion Recall the Frobenius character: ch ρ = 1 � Tr ρ ( π ) p λ ( π ) r ! π ∈ S r where p λ is a power sum symmetric function. We have: � ch S ( λ ) = s λ = F Des ( Q ) Q ∈ SYT ( λ ) where s λ is a Schur function and F D is a fundamental quasi-symmetric function: � F D = x i 1 x i 2 . . . x i r . i 1 ≤ i 2 ≤···≤ i r j ∈ D ⇒ i j < i j +1 Therefore, as our bijection is descent preserving, we obtain: � � c µ � � λ S ( λ ) = ch F Des ( w ) . λ ⊢ r w vacillating tableau l ( λ ) ≤ n of length r and shape µ Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

  9. Main result: a bijection between � � vacillating tableaux ↔ orthogonal LRT, SYT that preserves descents. Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

  10. Strategy (SYT, oLRT) (SYT, aoLRT) (SYT odd, µ ) 1 2 5 6 9 1 1 1 2 5 6 9 1 2 5 6 9 3 4 7 812 2 2 3 4 7 812 3 4 7 812 1013 1 1 3 3 1013 3 2 1 1013 18 20 23 1116 2 2 4 1116 2 1116 19 14 1 1 1 14 1 1 14 2122 15 4 5 15 15 µ = (3 , 2 , 1) 17 5 17 17 Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

  11. Orthogonal Littlewood-Richardson tableaux n = 2 k + 1, ℓ ( λ ) ≤ n , ℓ ( µ ) ≤ k , µ ≤ λ e.g. n = 7, k = 3, λ = (5 , 5 , 2 , 2 , 1 , 1 , 1), µ = (3 , 2 , 1) Kwon’s LR tableaux alternative LR tableaux ◮ reverse skew-shape ◮ k twocolumn skew-shape semistandard tableau with semistandard tableaux, tail µ i ; one single column inner shape λ ◮ λ ′ determines the filling ◮ µ determines the filling, reading word is Yamanouchi ◮ several conditions on size ◮ technical condition and filling 1 1 2 2 3 2 1 1 1 3 3 2 2 2 4 1 1 1 1 1 4 5 5 Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

  12. First part: manipulate the orthogonal LR tableaux 3 1 1 3 2 2 �→ �→ 1 1 3 3 2 2 4 1 1 1 4 5 5 3 3 3 2 �→ �→ �→ 2 2 2 2 2 �→ �→ �→ �→ 2 3 2 3 2 3 2 3 2 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

  13. Strategy (SYT, oLRT) (SYT, aoLRT) (SYT odd, µ ) 1 2 5 6 9 1 1 1 2 5 6 9 1 2 5 6 9 3 4 7 812 2 2 3 4 7 812 3 4 7 812 1013 1 1 3 3 1013 3 2 1 1013 18 20 23 1116 2 2 4 1116 2 1116 19 14 1 1 1 14 1 1 14 2122 15 4 5 15 15 µ = (3 , 2 , 1) 17 5 17 17 (SYT even, µ ) (vac. tab. even, shape ∅ , partition) 1 8 9121316 2 1011141519 µ = (3 , 2 , 1) 3 1720 25 27 30 4 1823 26 5 21 2829 6 22 µ = (3 , 2 , 1) 7 24 (vac. tab. odd, shape ∅ , µ ) vacillating tableau µ = (3 , 2 , 1) Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

  14. 1 8 9121316 2 1011141519 3 1720 25 27 30 16 17 14 15 19 4 1823 26 13 20 5 21 2829 12 25 910 11 1 2 8 910 13 14 27 6 22 11 12 15 16 1 2 3 8 1 8 912 13 16 19 30 7 24 2 10 11 14 15 19 17 17 18 19 20 16 18 16 21 14 15 19 20 14 15 13 23 13 23 25 25 26 27 12 26 12 28 910 11 910 11 27 29 1 2 3 4 8 1 2 3 4 5 8 15 17 20 25 15 17 19 20 30 18 19 26 30 10 12 14 2 25 2 4 10 12 14 27 17 20 25 3 3 3 17 18 19 20 21 16 22 14 15 13 23 25 26 27 12 28 910 11 20 19 21 29 1 2 3 4 5 6 8 15 17 18 25 26 30 4 5 2 10 11 14 27 17 18 19 20 21 16 22 17 18 20 25 14 15 23 3 13 24 25 26 27 3 4 12 28 910 11 20 21 23 25 19 29 1 2 3 4 5 6 7 8 15 17 18 26 30 4 2 6 10 11 14 19 20 21 27 18 25 3 5 3 4 5 Judith Jagenteufel A Sundaram type bijection for SO (2 k + 1)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend