a structured approach part iii biological applications
play

A structured approach Part III Biological applications David - PowerPoint PPT Presentation

A structured approach Part III Biological applications David Gilbert Bioinformatics Research Centre University of Glasgow, Glasgow, UK drg@brc.dcs.gla.ac.uk Biological Applications 1 MAPK Pathway Responds to wide range of stimuli:


  1. A structured approach … Part III Biological applications David Gilbert Bioinformatics Research Centre University of Glasgow, Glasgow, UK drg@brc.dcs.gla.ac.uk Biological Applications 1

  2. MAPK Pathway • Responds to wide range of stimuli: cytokines, growth factors, neurotransmitters, cellular stress STIMULUS and cell adherence,… • Pivotal role in many key cellular processes: – growth control in all its variations, – cell differentiation and survival – cellular adaptation to chemical and physical stress. • Deregulated in various diseases: cancer; immunological, inflammatory and degenerative syndromes, • Represents an important drug target. drg@brc.dcs.gla.ac.uk Biological Applications 2

  3. MA1: Mass action for enzymatic reaction - phosphorylation k 1  →  E | A k 3 E + A  E + B  → ←   k 2 • A: substrate E • B: product (phosphorylated A) • E: enzyme (kinase) • E|A substrate-enzyme complex A B drg@brc.dcs.gla.ac.uk Biological Applications 3

  4. Differential equations Enzymatic reaction k 1  →  A | E k 3 A + E  B + E  → ←   k 2 d [ A ] dt = − k 1 × [ A ] × [ E ] + k 2 × [ A | E ] d [ A | E ] = + k 1 × [ A ] × [ E ] − k 2 × [ A | E ] − k 3 × [ A | E ] dt d [ B ] dt = + k 3 × [ A | E ] d [ E ] dt = − k 1 × [ A ] × [ E ] + k 2 × [ A | E ] + k 3 × [ A | E ] drg@brc.dcs.gla.ac.uk Biological Applications 4

  5. MA2 model drg@brc.dcs.gla.ac.uk Biological Applications 5

  6. MA3 model drg@brc.dcs.gla.ac.uk Biological Applications 6

  7. Multiple substrates drg@brc.dcs.gla.ac.uk Biological Applications 7

  8. Metabolic pathways vs Signalling Pathways (Petri Nets) drg@brc.dcs.gla.ac.uk Biological Applications 8

  9. Mass action for enzymatic reaction - phosphorylation S 1 R R p • R: substrate, • R p : product (phosphorylated R) • S 1 : enzyme (kinase) • R|S 1 substrate-enzyme complex drg@brc.dcs.gla.ac.uk Biological Applications 9

  10. Phosphorylation - dephosphorylation step Mass action model 1 • R: unphosphorylated form S • R p : phosphorylated form • S: kinase • P: phosphotase R • R|S unphosphorylated+kinase complex R p • R|P unphosphorylated+phosphotase complex P drg@brc.dcs.gla.ac.uk Biological Applications 10

  11. Phosphorylation - dephosphorylation loop Mass action model 2 • R: unphosphorylated form S 1 • R p : phosphorylated form • S 1 : kinase • S 2 : phosphotase • R|S 1 unphosphorylated+kinase complex • R p| S 1 phosphorylated+kinase complex R R p • R|S 2 unphosphorylated+phosphotase complex • R p |S 2 phosphorylated+phosphotase complex S 2 drg@brc.dcs.gla.ac.uk Biological Applications 11

  12. Phosphorylation - dephosphorylation step Mass action (all singing/dancing) • R: unphosphorylated form S • R p : phosphorylated form • S: kinase • P: phosphotase R • R|S unphosphorylated+kinase complex R p • R|P unphosphorylated+phosphotase complex P drg@brc.dcs.gla.ac.uk Biological Applications 12

  13. Michaelis-Menten equation for phosphorylation-dephosphorylation S R R p • Assumptions: P 1. No product reverts to initial substrate 2. MM Equation holds at initial stage of reaction before concentration of product is appreciable 3. [Enzyme] << [Substrate] • K m is [Substrate] at which the reaction rate is half its maximum value • dR p /dt == reaction rate V • k 3 x S == V max for the forward reaction • k 3 ’ == V max for the reverse reaction (Phosphotase is ignored) • K m1 == (k 2 +k 3 )/k 1 (k’s from mass-action 1) drg@brc.dcs.gla.ac.uk Biological Applications 13

  14. Questions • Is Michaelis-Menten adequate for phosphorylation pathways? • Is Mass Action sufficient/correct for these pathways? • What is the effect of negative feedback? • Can we confirm the ‘negative feedback amplifer’ behaviour in both MM and MA models • Can oscillators be built? • Overall, what are the rules for component-based construction? drg@brc.dcs.gla.ac.uk Biological Applications 14

  15. drg@brc.dcs.gla.ac.uk Biological Applications 15

  16. Composition Vertical & horizontal S 1 S R R p R R p R pp P 1 P 2-stage cascade RR p RR 1-stage cascade double phosphorylation step P 2 drg@brc.dcs.gla.ac.uk Biological Applications 16

  17. Composition Vertical & horizontal drg@brc.dcs.gla.ac.uk Biological Applications 17

  18. Two stage, double phosphorylation drg@brc.dcs.gla.ac.uk Biological Applications 18

  19. Phosphorylation cascade: 2-stage, Mass Action model 1 k 1  →  R | S 1 k 3 S 1 R + S 1  R p + S 1  → ←   k 2 k 1 ' k 3 ' ←   R p + P R + P R | P ←   1 1 1  →  k 2 ' R R p kk 1  →  RR | R p kk 3 RR + R p  RR p + R p  → ←   kk 2 RR p RR kk 1 ' kk 3 ' ←   RR p + P  RR + P RR | P ←   2 2 2    → kk 2 ' Engineering Biochemical Network models BioSysBio08 19

  20. Phosphorylation cascade: 2-stage, Michaelis-Menten dR p K m 1 + R − k 3 ' × R p dt = k 3 × S 1 × R S 1 K m 2 + R p R R p dRR p = kk 3 × R p × RR kk 3 ' × RR p − dt KK m 1 + RR KK m 2 + RR p RR p RR Engineering Biochemical Network models BioSysBio08 20

  21. 3-stage Phosphorylation cascade (Mass Action) S 1 k 1  →  R | S 1 k 3 R + S 1  R p + S 1  → ←   k 2 k 1 ' k 3 ' ←   R p + P R + P R p | P ←   1 1 1  →  k 2 ' R R p kk 1  →  RR | R p kk 3 RR + R p  RR p + R p  → ←   P 1 kk 2 kk 1 ' kk 3 ' ←   RR p + P  RR + P RR p | P ←   2 2 2    → RR RR p kk 2 ' kkk 1    RRR | RR p → kkk 3 RRR + RR p  RRR p + RR p  → P 2 ←    kkk 2 kkk 1 ' kkk 3 ' ←   RRR p + P  RRR + P RRR p | P ←    3 3 3    → RRR RRR p kkk 2 ' P 3 Engineering Biochemical Network models BioSysBio08 21

  22. Phosphorylation cascade: 3-stage, Michaelis-Menten S 1 dR p K m 1 + R − k 3 ' × R p dt = k 3 × S 1 × R K m 2 + R p R R p dRR p = kk 3 × R p × RR kk 3 ' × RR p − dt KK m 1 + RR KK m 2 + RR p RR RR p kkk 3 × RR p × RRR dRRR p kkk 3 ' × RRR p = − dt KKK m 1 + RRR KKK m 2 + RRR p RRR RRR p Engineering Biochemical Network models BioSysBio08 22

  23. 3-stage drg@brc.dcs.gla.ac.uk Biological Applications 23

  24. Phosphorylation cascade + feedback S 1 S 1 R p R R p R P 1 P 1 RR p RR RR p RR P 2 P 2 S 1 S 1 R p R R p R P 1 P 1 RR p RR RR p RR P 2 P 2 drg@brc.dcs.gla.ac.uk Biological Applications 24

  25. drg@brc.dcs.gla.ac.uk Biological Applications 25

  26. drg@brc.dcs.gla.ac.uk Biological Applications 26

  27. Phosphorylation cascade + negative feedback: 2-stage, Mass Action model 1 ki  →  RR p | S 1 RR p + S 1 ←   ki ' S 1 k 1  →  R | S 1 k 3 R + S 1  R p + S 1  → ←   R R p k 2 k 1 ' k 3 ' ←   R p + P R + P R | P ←   1 1 1  →  k 2 ' RR p RR kk 1  →  RR | R p kk 3 RR + R p  RR p + R p  → ←   kk 2 kk 1 ' kk 3 ' ←   RR p + P  RR + P RR | P ←   2 2 2    → kk 2 ' Engineering Biochemical Network models BioSysBio08 27

  28. Phosphorylation cascade + negative feedback: 2-stage, Michaelis-Menten dR p − k 3 ' × R p k 3 × S 1 × R S 1 dt =   K m 1 × 1 + RR p K m 2 + R p  + R  K i   R R p dRR p = kk 3 × R p × RR kk 3 ' × RR p − dt KK m 1 + RR KK m 2 + RR p RR p RR [ S ] V = V max × • Using Competitive Inhibition   [ S ] + K m × 1 + [ I ]   [ K i ]   • Ki is the dissociation constant for the SI complex Engineering Biochemical Network models BioSysBio08 28

  29. Phosphorylation cascade + negative feedback: 3-stage, Mass Action, model 1 ki  →  RRR p | S 1 RRR p + S 1 ←   S 1 ki ' k 1  →  R | S 1 k 3 R + S 1  R p + S 1  → ←   k 2 R R p k 1 ' k 3 ' ←   R p + P R + P ←   R p | P 1 1 1  →  k 2 ' kk 1  →  RR | R p kk 3 RR + R p  RR p + R p  → ←   kk 2 RR p RR kk 1 ' kk 3 ' ←   RR p + P  RR + P ←   RR p | P 2 2 2    → kk 2 ' kkk 1    RRR | RR p → kkk 3 RRR + RR p  RRR p + RR p  → ←    kkk 2 RRR RRR p kkk 1 ' kkk 3 ' ←   RRR p + P  RRR + P ←    RRR p | P 3 3 3    → kkk 2 ' Engineering Biochemical Network models BioSysBio08 29

  30. Phosphorylation cascade + negative feedback: 3-stage, Michaelis-Menten S 1 dR p − k 3 ' × R p k 3 × S 1 × R dt =   K m 1 × 1 + RRR p K m 2 + R p R R p  + R  K i   dRR p = kk 3 × R p × RR kk 3 ' × RR p RR RR p − dt KK m 1 + RR KK m 2 + RR p kkk 3 × RR p × RRR dRRR p kkk 3 ' × RRR p RRR RRR p = − dt KKK m 1 + RRR KKK m 2 + RRR p [ S ] V = V max × • Using Competitive Inhibition   [ S ] + K m × 1 + [ I ]   [ K i ]   • Ki is the dissociation constant for the SI complex Engineering Biochemical Network models BioSysBio08 30

  31. 3-stage, negative feedback drg@brc.dcs.gla.ac.uk Biological Applications 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend