a short introduction to two phase flows 1d time averaged
play

A SHORT INTRODUCTION TO TWO-PHASE FLOWS 1D-time averaged models - PowerPoint PPT Presentation

A SHORT INTRODUCTION TO TWO-PHASE FLOWS 1D-time averaged models Herv e Lemonnier DM2S/STMF/LIEFT, CEA/Grenoble, 38054 Grenoble Cedex 9 Ph. +33(0)4 38 78 45 40 herve.lemonnier@cea.fr , herve.lemonnier.sci.free.fr/TPF/TPF.htm ECP, 2011-2012


  1. A SHORT INTRODUCTION TO TWO-PHASE FLOWS 1D-time averaged models Herv´ e Lemonnier DM2S/STMF/LIEFT, CEA/Grenoble, 38054 Grenoble Cedex 9 Ph. +33(0)4 38 78 45 40 herve.lemonnier@cea.fr , herve.lemonnier.sci.free.fr/TPF/TPF.htm ECP, 2011-2012

  2. TIME- AND AREA-AVERAGED (1D-) MODELS • Homogeneous model, • Drift-flux model, • Two-fluid model, – Closure issue, – Some unexpected consequences of some modeling assumptions. 1. Physical consistency of the two-fluid model, 2. Mathematical nature of the PDE’s • Back to composite averaged equations (common assumptions) 1D-time averaged models 1/30

  3. COMPOSITE AVERAGING THE MASS BALANCE • Space and time averaged mass balance: � ∂tAR k 2 < ρ k > 2 + ∂ ∂ d l Γ k � − ∂z AR k 2 < ρ k w k > 2 = Γ k , m k ˙ n k � n kC C i • Mean value definitions: R k 2 < ρ k > 2 � R k 2 ρ k = α k ρ k , R k 2 < ρ k w k > 2 � α k ρ k v k = M k • With these new variables, ∂tAα k ρ k + ∂ ∂ ∂z Aα k ρ k v k = Γ k • No assumptions, simple change of variable. α ( r ) � = α and w k ( r ) � = v k are non-uniform. 1D-time averaged models 2/30

  4. MIXTURE MASS BALANCE • Add the phase mass balances, ∂tA ( α 1 ρ 1 + α 2 ρ 2 ) + ∂ ∂ ∂z A ( α 1 ρ 1 v 1 + α 2 ρ 2 v 2 ) = 0 • Mixture density (definition), ρ = α 1 ρ 1 + α 2 ρ 2 • Mixture velocity defined as to preserves the mass flow rate, ρv = α 1 ρ 1 v 1 + α 2 ρ 2 v 2 • Mixture mass balance, ∂tAρ + ∂ ∂ ∂z Aρv = 0 1D-time averaged models 3/30

  5. MOMENTUM BALANCE • Simplified, 1 pressure (instead of 3), neglect the effect longitudinal diffusion. ∂tA< R k 2 ρ k w k > 2 + ∂ ∂ ∂ ∂z A< R k 2 ρ k w 2 k > 2 + AR k 2 ∂z < p k > 2 − AR k 2 < ρ k g z > 2 � � d l d l m k w k − n k � V k � n z ) n k � V k � n z = − ( ˙ + n k � n kC n k � n kC C i C k • 1D assumption: velocity space correlation C , mean pressure, p k , the so-called flat profile assumption. C � < R k 2 ρ k w 2 k > 2 ∂ ∂p k = 1 , R k 2 ∂z < p k > 2 = α k α k ρ k v 2 ∂z k • Interaction terms, change of variable: � � d l d l − ( ˙ m k w k ) = Γ k v ki , = A< | γ> | 2 = Aγ n k � n kC n k � n kC C i C i � � d l d l n k � V k � n z n k � V k � n z = − Aγτ ki , = − P k τ wk n k � n kC n k � n kC C i C k 1D-time averaged models 4/30

  6. MOMENTUM BALANCE (CT’D) • New notations, in blue, the flat profile assumption main consequence, ∂tAα k ρ k v k + ∂ ∂ ∂p k ∂z Aα k ρ k v 2 k − Aα k ∂z = Γ k v ki − Aγτ ki − P k τ wk · · · • Momentum balance for the mixture, single pressure ∂tA ( α 1 ρ 1 v 1 + α 2 ρ 2 v 2 ) + ∂ ∂ 2 ) − A∂p ∂z A ( α 1 ρ 1 v 2 1 + α 2 ρ 2 v 2 ∂z = − Pτ w • Another form of the inertia term, x � M G M , L = G 2 x 2 + (1 − x ) 2 1 G = M α G ρ G v 2 G + α L ρ L v 2 ρ ′ , ρ ′ = , A . αρ G (1 − α ) ρ L • Give two examples of inconsistency of the flat profile assumption. 1D-time averaged models 5/30

  7. TOTAL ENERGY BALANCE • Energy balance, native form → enthalpy form, � � � � ∂ u k + 1 > 2 + ∂ u k + 1 2v 2 2v 2 ∂tA k < ρ k ∂z A k < ρ k w k > 2 k k + ∂ ∂z A k < n z � ( q k − T k � v k ) > 2 − A k < ρ k g k � v k > 2 � � � u k + 1 d l 2v 2 + n k � ( q k − T k � v k )) = − ( ˙ m k k n k � n kC C i ∪ C k ∂ • In the ∂z terms, u k → h k − p k /ρ k , T k → V k , ∂t term u k → h k − p k /ρ k adds − ∂ ∂ • In the ∂t A k < p k > 2 , use the identity (2), � ∂tA k < p k > 2 = A k < ∂p k ∂ d l p k v i � n ∂t > 2 + n k � n kC C i ∪ C k • Collect the pressure terms in the RHS, 1D-time averaged models 6/30

  8. TOTAL ENERGY BALANCE (CT’D) • Energy balance in enthalpy form, � � � � ∂ h k + 1 > 2 − A k < ∂p k ∂t > 2 + ∂ h k + 1 2v 2 2v 2 ∂tA k < ρ k ∂z A k < ρ k w k > 2 k k + ∂ ∂z A k < n z � ( q k − V k � v k ) > 2 − A k < ρ k g k � v k > 2 � � � h k + 1 d l 2v 2 + n k � ( q k − V k � v k )) = − ( ˙ m k k n k � n kC C i ∪ C k • Neglect the diffusive term, v 2 k ≈ v 2 k , the mean enthalpy preserves the flux, � � � � ∂ h k + 1 ∂p k ∂t + ∂ h k + 1 2 v 2 2 v 2 ∂tAα k ρ k − Aα k ∂z Aα k ρ k v k k k − Aα k ρ k g k v k = Γ k h t ki + Aγq ki + P k q kw 1D-time averaged models 7/30

  9. MIXTURE ENERGY BALANCE • Add the two phase balances, interaction terms sum vanish at the interface, ∂ 2 ) + ∂ ∂tA ( α 1 ρ 1 h t 1 + α 2 ρ 2 h t ∂z A ( α 1 ρ 1 v 1 h t 1 + α 2 ρ 2 v 2 h t 2 ) − A∂p ∂t − A ( α 1 ρ 1 g 1 v 1 + α 2 ρ 2 g 2 v 2 ) = Pq w , k � h k + 1 • where the total enthalpy is h t 2 v 2 k , • Other practical form of the enthalpy flux, h t h t L = M ( xh t V + (1 − x ) h t Aα V ρ V v V V + Aα L ρ L v L L ) � �� � � �� � M V M L 1D-time averaged models 8/30

  10. THE HOMOGENEOUS MODEL AT THERMODYNAMIC EQUILIBRIUM (HEM) • 3 balances for the mixture + 3 assumptions – Mean velocity are equal : w V = w L ≡ α = β – Mean temperatures satisfy the equilibrium condition : T L = T V = T sat ( p ) • Thermodynamique, EOS, ρ L = ρ L sat ( p ) , ρ V = ρ V sat ( p ) , h L = h L sat ( p ) , h V = h V sat ( p ) • HEM void fraction, Q G xρ L α = β = = = α ( x, p ) Q G + Q L xρ L + (1 − x ) ρ V • Balance equations are identical to that of single-phase flow, ∂tAρ + ∂ ∂ ∂z Aρw = 0 , ρ = αρ V + (1 − α ) ρ L ∂tAρw + ∂ ∂ ∂z Aρw 2 + A∂p ∂z = − Pτ W + Aρg z ∂tAρ ( h + 1 ∂ 2 w 2 ) − A∂p ∂t + ∂ ∂z Aρw ( h + 1 2 w 2 ) = Pq W + Aρg z w 1D-time averaged models 9/30

  11. HEM (CT’D) • Other practical form, combine with the mass balance, ∂tAρ + ∂ ∂ ∂z Aρw = 0 ρ∂w ∂t + ρw∂w ∂z + ∂p ∂z = − P Aτ W + ρg z ρ ∂ ∂t ( h + 1 2 w 2 ) − ∂p ∂t + ρw ∂ ∂z ( h + 1 2 w 2 ) = P Aq W + ρg z w • Mechanical energy balance, momentum balance × w , ρ ∂ 1 2 w 2 + ρw ∂ 2 w 2 + w∂p 1 ∂z = − P Awτ W + ρg z w ∂t ∂z • Entropy balance, T d s = d h − d p ρ ρT ∂s ∂t + ρwT ∂s ∂z = P A ( q W + wτ W ) 1D-time averaged models 10/30

  12. HEM (CT’D) • Alternate form with total enthalpy and entropy, ∂tρ + w∂ρ ∂ ∂z + ρ∂w ∂z = − ρw d A A d z ρ ∂ ∂t ( h + 1 2 w 2 ) − ∂p ∂t + ρw ∂ ∂z ( h + 1 2 w 2 ) = P Aq W + ρg z w ρT ∂s ∂t + ρwT ∂s ∂z = P A ( q W + wτ W ) • Very important particular case: stationary flow, adiabatic, no friction nor volume forces, M = Aρw = cst h + 1 2 w 2 = cst s = xs V + (1 − x ) s L = cst • Applications: flashing in long pipes, w/o heating, critical flow (no model !). 1D-time averaged models 11/30

  13. CLOSURES FOR THE HEM • Friction and heat flux, q W , τ W , • Independent variables : x , w , et p , • EOS, v = 1 ρ = xv V + (1 − x ) v L , specific volume [m 3 /kg], v L = v L sat ( p ) , v V = v V sat ( p ) , h L = h L sat ( p ) , h V = h V sat ( p ) v V,p , v L,p , h V,p , h L,p • NB: back again to the thermodynamic consistency issue. 1D-time averaged models 12/30

  14. DRIFT-FLUX MODEL • Different phase mean velocities, ”mechanical non-equilibrium”. • Mass balances for the liquid and vapor, momentum balance for the mixture, w V � = w L , w m mixture velocity. • Additional closure (core modeling, FLICA) w V − w L = f ( x, p, α, flow regime , · · · ) J GL = f ( α, flow regime , · · · ) • Slow transients NOT inertia controlled. • Can also be used in 3D, see for example Delhaye (2008a), Ishii & Hibiki (2006). • Main advantage: only one momentum balance. 1D-time averaged models 13/30

  15. THE TWO-FLUID MODEL • Mechanical and thermal non-equilibriums, – 3 balance equations per phase (6), or – 3 balance equations for the mixture and 3 equations for the dispersed phase. • Closures – Topological relations, < pq > , < p >< q > , the pressure issue, – Interactions at the interface, – Interactions of each phase at the wall. • Consequences of the closure assumptions, – Propagation characteristics, – Critical flow, – Mathematical nature of the PDE’s (hyperbolicity ?). 1D-time averaged models 14/30

  16. � � � � � EXAMPLE: STRATIFIED FLOWS • Isothermal, incompressible, horizontal, µ = 0, σ = 0, ˙ m = 0, 2D. • Mass balance, ∂th 1 ρ 1 + ∂ ∂ ∂z h 1 ρ 1 < u 1 > = 0 ∂th 2 ρ 2 + ∂ ∂ ∂z h 2 ρ 2 < u 2 > = 0 • Momentum balances, jump of momentum at the interface, ∂th 1 ρ 1 < u 1 > + ∂ ∂ 1 > + ∂ ∂h 1 ∂z h 1 ρ 1 < u 2 ∂z h 1 < p 1 > = p i 1 ∂z ∂th 2 ρ 2 < u 2 > + ∂ ∂ 2 > + ∂ ∂h 2 ∂z h 2 ρ 2 < u 2 ∂z h 2 < p 2 > = p i 2 ∂z p i 1 = p i 2 � p i 1D-time averaged models 15/30

  17. � � � � � � CLOSURES • 4 equations, 5 unknown variables h , < u 1 > , < u 2 > , < p 1 > , < p 2 > , • 3 unknown quantities: < u 2 1 > , < u 2 2 > , p i . • Topological relation, < p 1 > = p i + 1 2 ρ 1 gh 1 < p 2 > = p i − 1 2 ρ 2 gh 2 • Cannot be derived from momentum ⊥ . • Spatial correlations, flat profile assumption, or relaxation < u 2 � � k > d k > = 1 d t < u 2 < u 2 k > − < u 2 < u k > 2 = 1 , k > 0 T • Closed system. 1D-time averaged models 16/30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend