a short introduction to two phase flows void fraction
play

A SHORT INTRODUCTION TO TWO-PHASE FLOWS Void fraction: - PowerPoint PPT Presentation

A SHORT INTRODUCTION TO TWO-PHASE FLOWS Void fraction: Experimental techniques and simple models Herv e Lemonnier DTN/SE2T, CEA/Grenoble, 38054 Grenoble Cedex 9 T el. 04 38 78 45 40 herve.lemonnier@cea.fr ,


  1. A SHORT INTRODUCTION TO TWO-PHASE FLOWS Void fraction: Experimental techniques and simple models Herv´ e Lemonnier DTN/SE2T, CEA/Grenoble, 38054 Grenoble Cedex 9 T´ el. 04 38 78 45 40 herve.lemonnier@cea.fr , herve.lemonnier.sci.free.fr/TPF/TPF.htm ECP, 2011-2012

  2. PHASE PRESENCE FUNCTION • Phase presence function definition:   1 si M ( r ) ∈ phase k, X k ( r , t ) �  0 si M ( r ) / ∈ phase k. • Phase indicator, FIP, fonction indicatrice de phase , χ k . • Space averaging: � 1 Conditional, < f > n � f k d V, D kn D kn � 1 | n � Plain, < | f> f d V. D n D n Void fraction: experimental techniques and simple models 1/38

  3. AVERAGING OPERATORS (CT’D) • Time averaging: � k ( t ) � 1 X Conditional, f f ( τ )d τ, T k [ T k ] � Plain, f ( t ) � 1 f ( τ )d τ. T [ T ] • Commutativity of averaging operators: X R kn < f k > n = < | α k f k > | n . • Void fraction: average of the phase presence function • Void fraction, gas hold-up: taux de pr´ esence du gaz , taux de vide . Void fraction: experimental techniques and simple models 2/38

  4. � VOID FRACTION ( α ) • Local time fraction (gas, void fraction) : α G ( r , t ) � X G = T G T . • Instantaneous space fraction. – Line fraction: � � L G = L G R G 1 ( t ) � < | X G > | 1 = L G + L L L – Area fraction: A G = A G R G 2 ( t ) � < | X G > | 2 = A G + A L A � � � � � � � – Volume fraction: V G = V G R G 3 ( t ) � < | X G > | 3 = V G + V L V Void fraction: experimental techniques and simple models 3/38

  5. BASIC IDENTITIES • Commutativity ( f = 1): R kn = < | α k > | n = < | X k > | n . • Mean phase fraction. – Mean line-averaged, � � R G 1 = 1 R G 1 ( τ ) d τ = 1 α G d L T L [ T ] L – Mean area-averaged, � � R G 2 = 1 R G 2 ( τ ) d τ = 1 α G d A T A [ T ] A – Mean volume averaged, � � R G 3 = 1 R G 3 ( τ ) d τ = 1 α G d V T V [ T ] V • 7 precise definitions of the void fraction. The one to keep depends on the context (model). VF is always some average of X k . Void fraction: experimental techniques and simple models 4/38

  6. � � � � OTHER RELATED DEFINITIONS • Instantaneous interfacial area: Γ 3 ( t ) � A i ( t ) V • Local interfacial area, is a time-averaged quantity: � 1 γ = | v i . n k | disc . ∈ [T] • Identity (commutativity of interaction terms), mean interfacial area: Γ 3 ≡ < | γ> | 3 • Γ 3 and γ can be measured. Void fraction: experimental techniques and simple models 5/38

  7. EXPERIMENTAL TECHNIQUES FOR VOID FRACTION • Local void fraction. – Electrical probes – Optical probes • Line averaged void fraction. – Light attenuation (X or γ rays) • Area-averaged void fraction. – X-rays ou γ -rays, (one-shot) – Multi-beam densitometry – Neutrons diffusion (steel, steam-water, HP-HT) – Impedance probes • Volume averaged void fraction, – Quick closing valves, – Gravitational (hydrostatic) pressure drop, – Ultrasound attenuation (Bensler, 1990). • Medical imaging, CT, MRI. Void fraction: experimental techniques and simple models 6/38

  8. � � LOCAL VOID FRACTION Electrical probes (different resistivity): Determination of the liquid phase indicator, X L ( r , t ). • Continuous phase (water), conducting, • Dispersed phase (air), non conducting • Threshold on current → X L → α L � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Void fraction: experimental techniques and simple models 7/38

  9. � LOCAL VOID FRACTION Optical probes (different refraction index) : Determination of the gas indicator, X G ( r , t ). Principle: dish washer, rinsing liquid level indicator. � � � � � Water, freons, T < 110 o C � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Void fraction: experimental techniques and simple models 8/38

  10. � � � � � � � � HOW TO SET THE THRESHOLD LEVEL? � � � � � • α = X L , depends on threshold: S 1 > S 2 ⇒ α L 1 < α L 2 . • Reference method: � � � � � � � � � � � ∆ p → R G 2 • It is recalled, < | α G > | 2 = R G 2 • Determine α G ( S ) on the section. � � � � � � � � � Find S such that, < | α G ( S ) > | 2 = R G 2 • Consistency check, not a calibration. � � � � Void fraction: experimental techniques and simple models 9/38

  11. ELECTRICAL & OPTICAL PROBES Void fraction: experimental techniques and simple models 10/38

  12. MULTIPLE TIP SENSORS • 2-sensor probe. Add assumptions: spherical bubbles, chord distribution → mean diameter, mean gas velocity. • 4-sensor probe. Determine interface orientation ( n k ), geometrical surface velocity, v i � n k • Local interfacial area, � 1 γ = | v i . n k | disc . ∈ [T] • Mean sauter diameter ( D 32 ), identity (bubbles), 6 α γ ≡ D SM Void fraction: experimental techniques and simple models 11/38

  13. � � LIGHT (PHOTONS) ATTENUATION • X-rays or γ -rays. • Collimated beam, single spectral line • Beer-Lambert relation: [ µ ] = L − 1 � � � � d I = − µI d x, • Exponential absorption, µ absorption coefficient. • µ ρ : mass energy-absorption coefficient depends on f . � � Void fraction: experimental techniques and simple models 12/38

  14. � � � PRACTICAL IMPLEMENTATION • X-Rays generator, γ source • Detection: photo multiplier (NaI, semi- conductors), counter. � � � � � � � � • Collimation: thick heavy metal block, � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � drilled, 0,5 mm � � • Collimated beam, single spectral line, • Integrate B-L on a finite length, � � − µ I = I 0 exp( − µL ) = I 0 exp ρ ρL • At low pressure, little absorption in the gas. Void fraction: experimental techniques and simple models 13/38

  15. � � � MEASURING THE LINE PHASE FRACTION • D , diameter, e/ 2 wall thickness. � � � • Beer-Lambert equation: I = I 0 exp( − µ p e ) exp ( − µ L (1 − R G 1 ) D ) exp( − µ G R G 1 D ) � � • Definition of the gas line fraction: L G = L G R G 1 ( z, t ) � L G + L L D • Low pressure assumption: I G = I 0 exp( − µ p e ) I L = I 0 exp( − µ p e ) exp ( − µ L D ) � � I = I 0 exp( − µ p e ) exp ( − µ L (1 − R G 1 ) D ) R G 1 = ln I/I L Air-water flow, steam-vapor. ln I G /I L Void fraction: experimental techniques and simple models 14/38

  16. UNCERTAINTY FACTORS � � � • Contrast → low energy � µ L � I G ≈ exp ρ L D I L ρ L • Statistical errors with counters → high energy � ∆ N 1 I ∝ N, ∝ N N � � � � � � � � � � � � • R L 1 fluctuations, I ∝ exp( R G 1 ) and exp f � = exp f , ∆ R G ≈ 0 , 20 (slug) , ∆ R G ≈ 0 , 05 (churn). I • Source stability: reference beam method, I → 0 . I ′ • Spectral hardening, direct calibration, I ( R L ), or use filters. Void fraction: experimental techniques and simple models 15/38

  17. MEAN LINE GAS FRACTION After Bensler (1990, p. 60) • No water flow, J L = 0: R G 2 = 0,01, 0,04, 0,07, 0,10, 0,13, 0,16, 0,19. Void fraction: experimental techniques and simple models 16/38

  18. MEAN LINE GAS FRACTION After Bensler (1990, p. 61) • Two-phase flow, J L = 2 m/s : R G 2 = 0,03, 0,061, 0,069, 0,089, 0,123. • Wall peaking, still an open problem for modeling... • Transition in profile shape, bubble clustering, slug flow. Void fraction: experimental techniques and simple models 17/38

  19. � � � � � MEAN AREA FRACTION • Mean area fraction, R G 2 , � R � 1 R 2 − y 2 d y R G 2 = R G 1 ( y ) πR 2 � � − R • Computed tomography, axis-symmetric, R G 1 ( y ) ⇔ α G ( r ) R G 1 ( y, θ ) ⇔ α G ( X, Y ) • Instantaneous surface fraction, R G 2 ( t ) � � � � � � � � � � � � � � � � � � � � � � � � � � � � • Known limitations, Compton, diffusion ∆ R G 2 � 0 , 05 � � � � � � 0 < R G 2 < 0 , 8 Void fraction: experimental techniques and simple models 18/38

  20. MEAN AREA FRACTION • Multibeam densitometer, R G 1 ( θ ) ⇔ α G ( r ) � � � � � � � � � • XCT, medical scanner � � � � � � R G 1 ( θ, φ ) ⇔ α G ( x, y ) � � � � � � � � � � � � � � • Neutron diffusion, 90˚ • Low attenuation in steel, diffusion on H nucleus • Neutron cinematography. Void fraction: experimental techniques and simple models 19/38

  21. SUPER MOBY DICK After figures 63’r et 64’r from Jeandey et al. (1981). P 0 = 59 . 43 bar, T L = 269 . 2 o C, P sat = 54 . 31 bar. Void fraction: experimental techniques and simple models 20/38

  22. THE ULTIMATE METHOD? • Nuclear magnetic resonance, NMR, MR imaging – Non intrusive method, – Magnetization (H, F), magnetic fields – Density (void fraction), velocity • Space and time resolution – 0D, 1D, 2D, etc. – Time averaged quantities, arbitrary space filters (LES). – Turbulent transport phenomena. • Routine for medicine, body (static) imaging, 1 mm 3 , arterial flow rate, still under development for flow imaging. Void fraction: experimental techniques and simple models 21/38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend