a recursive construction of joint eigenfunctions for the
play

A recursive construction of joint eigenfunctions for the commuting - PowerPoint PPT Presentation

A recursive construction of joint eigenfunctions for the commuting hyperbolic Calogero-Moser Hamiltonians (Joint work with M. Hallns) Simon Ruijsenaars School of of Mathematics University of Leeds, UK Budapest, 4 April 2014 Introduction


  1. A recursive construction of joint eigenfunctions for the commuting hyperbolic Calogero-Moser Hamiltonians (Joint work with M. Hallnäs) Simon Ruijsenaars School of of Mathematics University of Leeds, UK Budapest, 4 April 2014

  2. Introduction Reminders ◮ The hyperbolic ( A N − 1 ) Calogero-Moser systems are integrable systems describing N particles on the line with hyperbolic pair interaction. ◮ The nonrelativistic quantum version is defined by the Hamiltonian N H = − � 2 � � ∂ 2 x j + g ( g − � ) V ( x j − x l ) , 2 j = 1 1 ≤ j < l ≤ N with � > 0 (Planck’s constant), g ∈ R (coupling constant), and pair potential V ( x ) = µ 2 / 4 sinh 2 ( µ x / 2 ) , µ > 0 . ◮ The N = 2 Schrödinger equation can be solved via the conical function, a specialization of the Gauss hypergeometric function.

  3. ◮ Associated integrable system ( N commuting PDOs): N � � � ∂ x j , H 2 = − � 2 H 1 = − i � ∂ x j 1 ∂ x j 2 − g ( g − � ) V ( x j − x l ) , j = 1 1 ≤ j 1 < j 2 ≤ N 1 ≤ j < l ≤ N � H k = ( − i � ) k ∂ x j 1 · · · ∂ x jk + l . o ., k = 3 , . . . , N , 1 ≤ j 1 < ··· < j k ≤ N where l.o. = lower order in partials. Thus, the defining Hamiltonian is given by H = H 2 1 / 2 − H 2 . ◮ Integrable versions exist for Lie algebras B N , . . . , E 8 , F 4 , G 2 (Olshanetsky/Perelomov, Oshima) and BC N (Inozemtsev, Oshima). ◮ N > 2 eigenfunctions: Harish-Chandra, Heckman/Opdam, Felder/Varchenko, Chalykh,...

  4. Introduction Goal ◮ By proceeding recursively in N , construct joint eigenfunctions Ψ N ( x , p ) of the Hamiltonians H k : H k ( x )Ψ N ( x , p ) = S k ( p )Ψ N ( x , p ) , k = 1 , . . . , N , where � S k ( p ) = p j 1 · · · p j N . 1 ≤ j 1 < ··· < j k ≤ N ◮ For convenience, we rewrite Ψ N ( x , p ) as Ψ N ( g ; ( x 1 , . . . , x N ) , ( p 1 , . . . , p N )) = W N ( g / � ; µ x / 2 ) 1 / 2 × F N ( g / � ; ( µ x 1 / 2 , . . . , µ x N / 2 ) , ( 2 p 1 / � µ, . . . , 2 p N / � µ )) with � [ 4 sinh 2 ( t j − t k )] λ . W N ( λ ; t ) ≡ 1 ≤ j < k ≤ N

  5. Introduction Main results ◮ Assuming Re λ ≥ 1, u ∈ R N and | Im t j | < π/ 2, we obtain N − 1 1 ≤ j < k ≤ n [ 4 sinh 2 ( t nj − t nk )] λ � � � F N ( λ ; t , u ) = � λ n ! � n + 1 � n � 2 cosh ( t n + 1 , j − t nk ) R N ( N − 1 ) / 2 n = 1 j = 1 k = 1     N n n − 1 N − 1 n � � � � � × exp  i u n t nj − t n − 1 , j dt nj ,    n = 1 j = 1 j = 1 n = 1 j = 1 where t Nj ≡ t j , j = 1 , . . . , N . ◮ This integral can also be written N � N − 1 � � � � � � exp iu N t j exp i ( u n − u n + 1 )( t n 1 + · · · + t nn ) t nn < ··· < t n 1 j = 1 n = 1 1 ≤ j < k ≤ n [ 2 sinh ( t nj − t nk )] 2 λ n � � × dt nj . � λ � n + 1 � n � 2 cosh ( t n + 1 , j − t nk ) j = 1 j = 1 k = 1

  6. Introduction Tools A crucial ingredient is an explicit description of the eigenvalue equations for F N . ◮ The starting point consists of the Lax matrix i λ L ( t , u ) jk ≡ δ jk u j + ( 1 − δ jk ) sinh ( t j − t k ) and the diagonal matrix E ( t ) ≡ diag ( w 1 ( t ) , . . . , w N ( t )) with � w j ( t ) ≡ − i λ coth ( t j − t k ) . k � = j

  7. ◮ We let : ˆ Σ k ( L + E )( t ) : denote the normal-ordered PDOs obtained from the symmetric functions � Σ k ( L ( t , u ) + E ( t )) ≡ det ( L ( t , u ) + E ( t )) I I ⊂{ 1 ,..., N } | I | = k by performing the substitutions u j → − i ∂ t j , j = 1 , . . . , N . ◮ The Hamiltonians H k ( λ ; t ) ≡ ( 2 / � µ ) k H k ( λ � ; 2 t /µ ) are given by (S. R.) H k ( λ ; t ) = W ( t ) 1 / 2 : ˆ Σ k ( L + E )( t ) : W ( t ) − 1 / 2 . ◮ It follows that F N ( t , u ) should satisfy the eigenvalue equations : ˆ Σ k ( L + E )( t ) : F N ( t , u ) = S k ( u ) F N ( t , u ) , k = 1 , . . . , N .

  8. Another key ingredient is given by so-called kernel functions. ◮ Given a pair of operators H 1 ( v ) and H 2 ( w ) , a kernel function is a function Ψ( v , w ) satisfying H 1 ( v )Ψ( v , w ) = H 2 ( w )Ψ( v , w ) . Here, v and w may vary over spaces of different dimension. ◮ There exist elementary kernel functions that connect the PDOs : ˆ Σ k ( L + E )( t ) : to a sum of PDOs in variables s 1 , . . . , s N − ℓ . (Langmann for k=2, Hallnäs/S. R. for k>2.) ◮ For ℓ = 1 this connection can be used to set up a recursive scheme yielding the above explicit integral representations of the joint eigenfunctions F N . ◮ For λ = 1 / 2 recursive H -eigenfunctions were previously found by Gerasimov/Kharchev/Lebedev, and for λ = − 1 , − 2 , . . . by Felder/Veselov. (Relation unclear to date.)

  9. N = 2 case From N = 1 to N = 2 ◮ For N = 1 we set F 1 ( t , u ) ≡ exp ( itu ) , which obviously satisfies − i ∂ t F 1 ( t , u ) = uF 1 ( t , u ) . ◮ Now consider � F 2 ( λ ; t , u ) ≡ e iu 2 ( t 1 + t 2 ) ds K ♯ 2 ( λ ; t , s ) F 1 ( s , u 1 − u 2 ) R with kernel function 2 K ♯ � [ 2 cosh ( t j − s )] − λ . 2 ( λ ; t , s ) ≡ j = 1

  10. ◮ If Re λ > 0 and u ∈ R 2 , then the integrand decays exponentially as | s | → ∞ . It has singularities only at s = t j ± i π 2 ( 2 n + 1 ) , j = 1 , 2 , n ∈ N . ◮ Hence F 2 ( λ ; t , u ) is well defined as long as u ∈ R 2 , Re λ > 0 , and t ∈ C 2 satisfies | Im t j | < π/ 2 , j = 1 , 2 .

  11. N = 2 case Holomorphy ◮ F 2 ( λ ; t , u ) has analytic continuation in ( λ, t ) to { λ ∈ C | Re λ > 0 } × { t ∈ C 2 || Im ( t 1 − t 2 ) | < π } . ◮ Follows via contour shifts: r t 2 + i π/ 2 r t 1 + i π/ 2 R + i η ✲ ✲ r t 2 − i π/ 2 r t 1 − i π/ 2 where we can choose η = Im ( t 1 + t 2 ) / 2. ◮ Can allow u ∈ C 2 such that | Im ( u 1 − u 2 ) | < 2 Re λ .

  12. N = 2 case Eigenfunction property We claim that F 2 ( λ ; t , u ) is a joint eigenfunction of the PDOs Σ ( 2 ) : ˆ 1 ( L + E )( t ) := − i ( ∂ t 1 + ∂ t 2 ) , : ˆ Σ ( 2 ) 2 ( L + E )( t ) := − ∂ t 1 ∂ t 2 + λ coth ( t 1 − t 2 )( ∂ t 1 − ∂ t 2 ) + λ 2 . ◮ Key point: eigenfunction identity Σ ( 2 ) : ˆ 2 ( L + E )( t ) : K ♯ 2 ( t , s ) = 0 , and kernel identity : ˆ Σ ( 2 ) 1 ( L + E )( t ) : K ♯ 2 ( t , s ) =: ˆ Σ ( 1 ) 1 ( L + E )( − s ) : K ♯ 2 ( t , s ) = i ∂ s K ♯ 2 ( t , s ) . ◮ By analyticity, need only consider t ∈ R and λ > 0 (say).

  13. To establish the eigenfunction property for : ˆ Σ ( 2 ) 1 ( L + E )( t ) : (e. g.), we use the following 7 steps. 1. Recall that � F 2 ( λ ; t , u ) ≡ e iu 2 ( t 1 + t 2 ) ds K ♯ 2 ( λ ; t , s ) F 1 ( s , u 1 − u 2 ) . R Σ ( 2 ) 2. Act with : ˆ 1 ( L + E )( t ) : , and shift through plane wave: � e iu 2 ( t 1 + t 2 ) : ˆ Σ ( 2 ) ds K ♯ 1 ( L + E + u 2 1 2 )( t ) : 2 ( λ ; t , s ) F 1 ( s , u 1 − u 2 ) . R 3. Note the expansion : ˆ Σ ( 2 ) 1 ( L + E + u 2 1 2 )( t ) :=: ˆ Σ ( 2 ) 1 ( L + E )( t ) : + 2 u 2 . 4. Act with PDO under the integral sign and invoke kernel identity: � Σ ( 1 ) e iu 2 ( t 1 + t 2 ) dsF 1 ( s , u 1 − u 2 ) : ˆ 1 ( L + E )( − s ) : K ♯ 2 ( λ ; t , s ) R � ds K ♯ + 2 u 2 e iu 2 ( t 1 + t 2 ) 2 ( λ ; t , s ) F 1 ( s , u 1 − u 2 ) . R

  14. 5. Recall that : ˆ Σ ( 1 ) 1 ( L + E )( − s ) := i ∂ s , and integrate by parts: � Σ ( 1 ) e iu 2 ( t 1 + t 2 ) ds K ♯ 2 ( λ ; t , s ) : ˆ 1 ( L + E )( s ) : F 1 ( s , u 1 − u 2 ) R � ds K ♯ + 2 u 2 e iu 2 ( t 1 + t 2 ) 2 ( λ ; t , s ) F 1 ( s , u 1 − u 2 ) . R 6. Use eigenfunction property for F 1 : � ds K ♯ ( u 1 − u 2 + 2 u 2 ) e iu 2 ( t 1 + t 2 ) 2 ( λ ; t , s ) F 1 ( s , u 1 − u 2 ) . R 7. Conclude that Σ ( 2 ) 1 ( L + E )( t ) : F 2 ( t , u ) = S ( 2 ) : ˆ 1 ( u ) F 2 ( t , u ) , where S ( 2 ) 1 ( a 1 , a 2 ) ≡ a 1 + a 2 . �

  15. N = 2 case A bound ◮ Let u ∈ R 2 . For Re λ > 0 and | Im ( t 1 − t 2 ) | < π , we have the F 2 -bound | F 2 ( λ ; t , u ) | < C ( λ, | Im ( t 1 − t 2 ) | ) Re ( t 1 − t 2 ) × exp ( − Im ( t 1 + t 2 )( u 1 + u 2 ) / 2 ) sinh ( Re λ Re ( t 1 − t 2 )) . ◮ This bound readily follows from the integral evaluation � ds z δ =+ , − 2 cosh ( s + δ z / 2 ) = 2 sinh z . � R

  16. Recursion scheme Kernel function ◮ The function N N − 1 K ♯ � � [ 2 cosh ( t j − s k )] − λ , N ( λ ; t , s ) ≡ N > 1 , j = 1 k = 1 satisfies the eigenfunction identity : ˆ Σ ( N ) N ( L + E )( t ) : K ♯ N ( t , s ) = 0 , and the kernel identities : ˆ Σ ( N ) ( L + E )( t ) : − : ˆ Σ ( N − 1 ) K ♯ � � ( L + E )( − s ) : N ( t , s ) = 0 , k < N . k k ◮ This connection between the N and N − 1 variable cases can be used to recursively construct the joint eigenfunctions F N of the N Σ ( N ) PDOs : ˆ ( L + E )( t ) : , k = 1 , . . . , N . k

  17. Recursion scheme Formal structure ◮ Assume the function F N − 1 ( t , u ) , t , u ∈ C N − 1 , has been constructed. ◮ Then F N ( t , u ) , t , u ∈ C N , is formally given by P N F N ( t , u ) ≡ e iu N j = 1 t j � R N − 1 dsW N − 1 ( s ) K ♯ N ( t , s ) ( N − 1 )! × F N − 1 ( s , ( u 1 − u N , . . . , u N − 1 − u N )) . ◮ Have shown F N ( λ ; t , u ) is well defined for Re λ ≥ 1 and t ∈ C N such that | Im t j | < π/ 2 (and u ∈ R N ), and continues analytically to { λ ∈ C | Re λ > 1 } × { t ∈ C N | 1 ≤ j < k ≤ N | Im ( t j − t k ) | < π } . max

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend