a rayleigh schr dinger perturbation theory
play

a) Rayleigh-Schrdinger perturbation theory b) choice of Hamiltonian - PowerPoint PPT Presentation

A Short Introduction into Quantum Chemical Calculations of NMR and EPR Parameters Martin Kaupp Institut fr Chemie, TU Berlin Part I: Some basics on quantum chemical methods Part II: Basics on perturbation theory methods for the


  1. A Short Introduction into Quantum Chemical Calculations of NMR and EPR Parameters Martin Kaupp Institut für Chemie, TU Berlin • Part I: Some basics on quantum chemical methods • Part II: Basics on perturbation theory methods for the quantum-chemical calculation of NMR and EPR parameters a) Rayleigh-Schrödinger perturbation theory b) choice of Hamiltonian c) nuclear shieldings (diamagnetic systems) d) electronic g-tensor e) hyperfine coupling f) (zero-field splitting) pNMR-ITN Workshop Mariapfarr, Austria, February 23, 2014

  2. A comprehensive treatment, Theory and Applications Wiley-VCH 2004. With 36 chapters on methodology and applications.

  3. The effective spin Hamiltonian ˆ   H = E model structure   simulation properties spin Hamiltonian parameters Applications to: -spectra assignment -structure elucidation -interpretation comparison with model and/or -dynamics homologous systems ( e.g. from literature, database)

  4. Introduction (1) effective spin Hamiltonian provides link between magnetic resonance experiment and quantum mechanical treatment:             H S g B S A I S D S I q I    N N   N ,         1        I B I D K I N N N NM NM M N N , M in most cases, property may be expressed as second derivative:   H ( , ) E a b     ( , ; , , ) X a S I b B S I     a b a b  appropriately treated by second-order perturbation theory:   0 V       ( , ) H H a b E

  5. Introduction (2) -relation between effective-spin Hamiltonian and quantum-chemical treatment requires appropriate Hamiltonian that takes care of spins and magnetic fields  starting point relativistic quantum mechanics (e.g. Dirac equation) often transformation to quasi-nonrelativistic formalism (e.g. Breit-Pauli Hamiltonian) we will start by ignoring relativistic effects and magnetic interactions  initially nonrelativistic quantum mechanics for H 0 relativistic effects and magnetic interactions will be introduced later, mainly by perturbation theory

  6. Part I: Some Basics on Quantum Chemical Methods

  7. H 0 : Nonrelativistic Quantum Mechanics (1) The general (non-relativistic) Hamiltonian describing N electrons and M nuclei is given (in a.u.) by: 1 1 Z 1 Z Z                2 2 A A B H i A 2 2 M r r R         i 1 , N A 1 , M i 1 , N A 1 , M i 1 , N j i A 1 , M B A A iA ij AB

  8. H 0 : Nonrelativistic Quantum Mechanics (2) after Born-Oppenheimer approximation (electronic Schrödinger equation):* electronic wave function ˆ    H E electron-electron electronic repulsion Hamiltonian 1 1   ˆ ˆ   H h ( i ) 2 r  i i j one-electron ij Hamiltonian 1 ˆ ˆ     2 h ( i ) ( i ) V ( i ) 2 operator of potential energy operator of kinetic energy (mainly el.-nuclear attraction) still missing: electronic spin (Pauli principle), *and time dependence removed

  9. H 0 : Nonrelativistic Quantum Mechanics (3) energy expectation value:   H  E 0   variational principle: ~ ~   H ~   E E ~ ~ 0 0   exact ground-state solution provides lower bound to energies of approximate solutions!

  10. H 0 : Nonrelativistic Quantum Mechanics (4) in the absence of electron-electron interactions:        ( 1 , 2 , 3 , 4 ,....... ) ( 1 ) ( 2 ) ( 3 ) ( 4 )..... ( ) n n 1 2 3 4 n Hartree product, independent-particle model, violates Pauli principle, no correlation.        ( 1 , 2 , 3 , 4 ,....... n ) ( 1 ) ( 2 ) ( 3 ) ( 4 )..... ( n ) 1 2 3 4 n Slater determinant (antisym. linear combination of product wavefunctions) -  i (i) : one-electron wave functions (molecular orbitals) -still no Coulomb correlation but Pauli exchange ~  insert as into variationa l principle !  Hartee-Fock method

  11. H 0 : Nonrelativistic Quantum Mechanics (5) take trial wave function with free parameters q and minimize energy:* ~ ~   ~     H *Lagrange multipliers  a E     to account for constant 0 0 ~ ~ N(electrons), and for       q q orthogonality of MOs   for example: single Slater determinant  Hartree-Fock method       f ( 1 ) h ( 1 ) v ( 1 ) f ( 1 ) ( 1 ) ( 1 ) HF a a a 1 Z      2 A h ( 1 ) f depends on coordinates of 1 2 r A iA all electrons (via v HF )     ( 1 ) v J K iterative solution HF b b b     2 “self - consistent field” (SCF) method 1 J ( 1 ) dx ( 2 ) r b 2 b 12  i : molecular orbitals          * 1 K ( 1 ) ( 1 ) dx ( 2 ) r ( 2 ) ( 1 ) J i : Coulomb op., K i : exchange op. b a 2 b 12 a b

  12. H 0 : Nonrelativistic Quantum Mechanics (6) algebraic expansion of  i into basis set: Roothan-Hall method  matrix operations, linear algebra     c ( A ) i ij j j optimizable parameters!!!  : atomic orbital basis function with center on atom A  MO expanded in linear combination of AOs  MO-LCAO method typical basis sets:           2   r r A f ( r , , ) e B g ( r , , ) e Gaussian-type orbitals (GTO) Slater-type orbitals (STO) integrals more convenient fullfil cusp condition others: plane waves, numerical AOs, muffin- tin orbitals, etc……* *also for DFT etc……..

  13. H 0 : Nonrelativistic Quantum Mechanics (7) Hartree-Fock method accounts for Pauli exchange but not for Coulomb correlation  E HF  ~ E (even with infinite basis set!) 0 0 ~   HF E E E Löwdin definition of correlation energy corr 0 0  better methods (e.g. post-Hartree-Fock or DFT), to account for E corr post-HF methods: perturbation theory (MPn) size-consistent, not variational configuration interaction (CI) not size-consistent,* variational coupled-cluster theory (CC) size-consistent, not variational *in truncated form

  14. A Hierarchy of post -Hartree-Fock Theories Semi-Empirical Density MO-Theory Functional Hartree-Fock (HF), SCF, MO-LCAO Theory ~        ( ) 1 ( )...... 2 ( n 1 ) ( ) n (n 3 -n 4 )  1 2 n 1 n n 4 Configuration Interaction (CI) Coupled Cluster Methods (CC) Perturbation Theory (MBPT)   ~ ~             ( C C r r C rs rs ......) e T (e.g. CCSD: n 6 , 0 0 a a ab ab 0 (e.g. MP2: n 5 , MP3: n 6 , MP4: n 7 )  r r s (       T T T CCSD(T): n 7 ) ........) (e.g. SDCI: n 6 ) 1 2 “Dressed CI Methods” CPF, ACPF, MCPF, CEPA typically n 6 Multiconfiguration SCF (MCSCF, CASSCF, GVB) Multireference Multireference Multireference Perturbation Theory Configuration Interaction Coupled Cluster Theory (CASPT2, MR-MP2, MR-MPn?) (e.g. MR-SDCI, MR-ACPF) n m : formal scaling factors relative to system size n. Note that linear pre-factors are also important

  15. Density Functional Theory (1) basic idea: use r (r) instead of the more complicated y (r1,r2,….rn): Hohenberg-Kohn Theorem (1963): E = E [ r ] E [ r ] = T [ r ] + V ne [ r ] + V ee [ r ] =  r ( r )  ( r ) d r + F HK [ r ] Hohenberg-Kohn functional F HK [ r ] = T [ r ] + V ee [ r ] Kohn-Sham Method (1964): exchange-correlation F [ r ] = T s [ r ] + J [ r ] + E xc [ r ] functional of the KS method E xc [ r ] = T [ r ] - T s [ r ] + V ee [ r ] - J [ r ]

  16. Density Functional Theory (2) Kohn-Sham equations:       f ( 1 ) ( 1 ) ( 1 ) f ( 1 ) h ( 1 ) v ( 1 ) a a a xc while formally similar to HF-SCF equations, KS method incorporates electron correlation via (unknown) v xc approximations to E xc and  xc : E xc r ]: local density approximation, LDA (e.g. SVWN, X  ) E xc r, r ]: gen. gradient approximation, GGA (e.g. BLYP, BP86, PW91, PBE,….) E xc r, r,  2 r, t ]: meta-GGA (e.g. PKZB, FT98,…..) hybrid functionals (with exact exchange) (e.g. B3LYP, BHPW91, mPW1,…) further: OEP, exact- exchange functionals….

  17. Density Functional Theory (3) See also: https://sites.google.com/site/markcasida/dft Local Density Approximation (LDA) 1/3   3 3    r    r LDA LDA  4/3 r r r E ( ) d - d     (r) x x    4 E c for homogeneous electron gas not known analytically but from very accurate fits to Quantum Monte Carlo simulations Generalized Gradient Approximation (GGA)   r r  r GGA LDA   GGA    r r r r E ( ) F ( ), ( ) d     xc xc xc (different functionals have been constructed). Meta-Generalized Gradient Approximation (mGGA)     r  r  r t mGGA mGGA  2 r r r r E ( ), ( ), ( ), ( ) d r   xc xc 1 occ 2 t     r r ( ) ( ) i 2 i

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend