a non iterative sampling approach for eit using noise
play

A non-iterative sampling approach for EIT using noise subspace - PowerPoint PPT Presentation

A non-iterative sampling approach for EIT using noise subspace projection Cdric Bellis 1 Andrei Constantinescu 2 Armin Lechleiter 3 Thomas Coquet 4 Thomas Jaravel 4 1 Dept Applied Physics & Applied Mathematics Columbia University USA 2


  1. A non-iterative sampling approach for EIT using noise subspace projection Cédric Bellis 1 Andrei Constantinescu 2 Armin Lechleiter 3 Thomas Coquet 4 Thomas Jaravel 4 1 Dept Applied Physics & Applied Mathematics · Columbia University · USA 2 Solid Mechanics Laboratory (UMR CNRS 7649) · École Polytechnique · France 3 Center for Industrial Mathematics · University of Bremen · Germany 4 Dept of Mechanics · École Polytechnique · France PICOF’12 · Wednesday, April 4 th

  2. Context • Let Ω ⊂ R d , d = 2 , 3 bounded connected background domain, ∂ Ω Lipschitz • Finite union I = � K j = 1 Ω j of disjoint inclusions Ω j ⊂ Ω and Ω \I connected. � 1 if ξ ∈ Ω \ I γ ( ξ ) = γ j ( ξ ) if ξ ∈ Ω j , j = 1 , . . . , K . with γ j ∈ L ∞ (Ω , R ) and 0 < c ≤ γ j < 1 (could be changed into 1 < γ j ≤ C) • Mean-free current density f ∈ L 2 ( ∂ Ω) generates potential u solution of ∇ · ( γ ∇ u ) = 0 in Ω ( γ ∇ u ) · n = f on ∂ Ω , → Determine γ from knowledge of NtD operator Λ γ : f �→ u | ∂ Ω • Geometric Prior: Inclusions embedded in known background medium C. Bellis & al. Noise Subspace Projection for EIT PICOF’12 · 4/4/12 2 / 18

  3. Context • Let Ω ⊂ R d , d = 2 , 3 bounded connected background domain, ∂ Ω Lipschitz • Finite union I = � K j = 1 Ω j of disjoint inclusions Ω j ⊂ Ω and Ω \I connected. � 1 if ξ ∈ Ω \ I γ ( ξ ) = γ j ( ξ ) if ξ ∈ Ω j , j = 1 , . . . , K . with γ j ∈ L ∞ (Ω , R ) and 0 < c ≤ γ j < 1 (could be changed into 1 < γ j ≤ C) • Mean-free current density f ∈ L 2 ( ∂ Ω) generates potential u solution of ∇ · ( γ ∇ u ) = 0 in Ω ( γ ∇ u ) · n = f on ∂ Ω , → Determine γ from knowledge of NtD operator Λ γ : f �→ u | ∂ Ω • Geometric Prior: Inclusions embedded in known background medium C. Bellis & al. Noise Subspace Projection for EIT PICOF’12 · 4/4/12 2 / 18

  4. Motivations • The map γ �→ Λ γ is non-linear • Severe ill-posedness: Given γ, γ ′ ∈ H 2 + s (Ω) with s > d / 2 (dimension d = 2 , 3 ) ◦ If γ, γ ′ piecewise-constant and Ω j , Ω ′ j known Lipschitz domains � � γ − γ ′ � � � � Λ − 1 − Λ − 1 � � L ∞ (Ω) ≤ β γ γ ′ H 1 / 2 ( ∂ Ω) → H − 1 / 2 ( ∂ Ω) G . Alessandrini , S . Vessella , Adv . Appl . Math ., 2005 . ◦ Standard logarithmic stability for generic configurations � � γ − γ ′ � � � � � � − α � log � Λ − 1 − Λ − 1 � � L ∞ (Ω) ≤ β γ γ ′ H 1 / 2 ( ∂ Ω) → H − 1 / 2 ( ∂ Ω) G . Alessandrini , Appl . Anal ., 1988 . → Qualitative sampling methods: computationally-effective approaches Factorization method, point source method, topological sensitivity, MUSIC, . . . C. Bellis & al. Noise Subspace Projection for EIT PICOF’12 · 4/4/12 3 / 18

  5. Motivations • The map γ �→ Λ γ is non-linear • Severe ill-posedness: Given γ, γ ′ ∈ H 2 + s (Ω) with s > d / 2 (dimension d = 2 , 3 ) ◦ If γ, γ ′ piecewise-constant and Ω j , Ω ′ j known Lipschitz domains � � γ − γ ′ � � � � Λ − 1 − Λ − 1 � � L ∞ (Ω) ≤ β γ γ ′ H 1 / 2 ( ∂ Ω) → H − 1 / 2 ( ∂ Ω) G . Alessandrini , S . Vessella , Adv . Appl . Math ., 2005 . ◦ Standard logarithmic stability for generic configurations � � γ − γ ′ � � � � � � − α � log � Λ − 1 − Λ − 1 � � L ∞ (Ω) ≤ β γ γ ′ H 1 / 2 ( ∂ Ω) → H − 1 / 2 ( ∂ Ω) G . Alessandrini , Appl . Anal ., 1988 . → Qualitative sampling methods: computationally-effective approaches Factorization method, point source method, topological sensitivity, MUSIC, . . . C. Bellis & al. Noise Subspace Projection for EIT PICOF’12 · 4/4/12 3 / 18

  6. Outline 1 Sampling approaches and noise subspace projection 2 Finite dimensional approximation of NtD operators 3 Numerical implementations and examples C. Bellis & al. Noise Subspace Projection for EIT PICOF’12 · 4/4/12 4 / 18

  7. Identification framework � � � • Let L 2 ϕ ∈ L 2 ( ∂ Ω) : ⋄ ( ∂ Ω) := ∂ Ω ϕ d S = 0 → NtD map Λ : L 2 ⋄ ( ∂ Ω) → L 2 ⋄ ( ∂ Ω) s.t. Λ f = u | ∂ Ω � � ∀ ϕ ∈ H 1 with u ∈ H 1 ⋄ (Ω) solution of: γ ∇ u · ∇ ϕ d V = f ϕ d S , ⋄ (Ω) Ω ∂ Ω • Reference homogeneous counterpart, i.e. γ = 1 in Ω : NtD map Λ 1 f = u 1 | ∂ Ω • NtD operators Λ and Λ 1 are compact on L 2 ⋄ ( ∂ Ω) → Measurement operator Π = Λ − Λ 1 • Extract the informations synthesized in Π → Probe range R (Π) using a fundamental solution g z g z has singular behavior at chosen sampling point z ∈ Ω • Π is self-adjoint and compact ⇒ ∃{ λ j , ψ j } with λ j > 0 and ψ j ∈ L 2 ⋄ ( ∂ Ω) s.t. ∞ � Π f = λ j ( f , ψ j ) L 2 ( ∂ Ω) ψ j j = 1 C. Bellis & al. Noise Subspace Projection for EIT PICOF’12 · 4/4/12 5 / 18

  8. Identification framework � � � • Let L 2 ϕ ∈ L 2 ( ∂ Ω) : ⋄ ( ∂ Ω) := ∂ Ω ϕ d S = 0 → NtD map Λ : L 2 ⋄ ( ∂ Ω) → L 2 ⋄ ( ∂ Ω) s.t. Λ f = u | ∂ Ω � � ∀ ϕ ∈ H 1 with u ∈ H 1 ⋄ (Ω) solution of: γ ∇ u · ∇ ϕ d V = f ϕ d S , ⋄ (Ω) Ω ∂ Ω • Reference homogeneous counterpart, i.e. γ = 1 in Ω : NtD map Λ 1 f = u 1 | ∂ Ω • NtD operators Λ and Λ 1 are compact on L 2 ⋄ ( ∂ Ω) → Measurement operator Π = Λ − Λ 1 • Extract the informations synthesized in Π → Probe range R (Π) using a fundamental solution g z g z has singular behavior at chosen sampling point z ∈ Ω • Π is self-adjoint and compact ⇒ ∃{ λ j , ψ j } with λ j > 0 and ψ j ∈ L 2 ⋄ ( ∂ Ω) s.t. ∞ � Π f = λ j ( f , ψ j ) L 2 ( ∂ Ω) ψ j j = 1 C. Bellis & al. Noise Subspace Projection for EIT PICOF’12 · 4/4/12 5 / 18

  9. Existing sampling approach 1/2 • Low-dimensional parameterization: K inclusions of small volume j = z j + ε ˆ → Ω j ≡ Ω ε Ω j • Measurement operator Π ≡ Π ε = Λ ε − Λ 1 converges to finite-rank operator ˆ Π � � � Π ε − ε d ˆ ⋄ ( ∂ Ω) = O ( ε d + 1 � 2 ) . Π L 2 ⋄ ( ∂ Ω) → L 2 with range: R (ˆ Π) = span { e k · ∇ z N ( · , z j ) , k = 1 , . . . , d ; j = 1 , . . . , K } using mean-free Green’s function N ( · , z ) of − ∆ , i.e. − ∆ ξ N ( ξ , z ) = δ ( ξ − z ) in Ω ξ N ( ξ , z ) · n ( ξ ) = −| ∂ Ω | − 1 on ∂ Ω , ∇ • Theorem: For any d ∈ S d − 1 and z ∈ Ω , let g z , d = d · ∇ z N ( · , z ) | ∂ Ω then z ∈ { z 1 , . . . , z K } if and only if g z , d ∈ R (ˆ Π) → MUSIC algorithm M . Bruhl , M . Hanke , M . Vogelius , Numer . Math ., 2003 C. Bellis & al. Noise Subspace Projection for EIT PICOF’12 · 4/4/12 6 / 18

  10. Existing sampling approach 1/2 • Low-dimensional parameterization: K inclusions of small volume j = z j + ε ˆ → Ω j ≡ Ω ε Ω j • Measurement operator Π ≡ Π ε = Λ ε − Λ 1 converges to finite-rank operator ˆ Π � � � Π ε − ε d ˆ ⋄ ( ∂ Ω) = O ( ε d + 1 � 2 ) . Π L 2 ⋄ ( ∂ Ω) → L 2 with range: R (ˆ Π) = span { e k · ∇ z N ( · , z j ) , k = 1 , . . . , d ; j = 1 , . . . , K } using mean-free Green’s function N ( · , z ) of − ∆ , i.e. − ∆ ξ N ( ξ , z ) = δ ( ξ − z ) in Ω ξ N ( ξ , z ) · n ( ξ ) = −| ∂ Ω | − 1 on ∂ Ω , ∇ • Theorem: For any d ∈ S d − 1 and z ∈ Ω , let g z , d = d · ∇ z N ( · , z ) | ∂ Ω then z ∈ { z 1 , . . . , z K } if and only if g z , d ∈ R (ˆ Π) → MUSIC algorithm M . Bruhl , M . Hanke , M . Vogelius , Numer . Math ., 2003 C. Bellis & al. Noise Subspace Projection for EIT PICOF’12 · 4/4/12 6 / 18

  11. Existing sampling approach 2/2 • Extended inclusions: Separate influence of unknown inclusion from that of known background Using that Π f = (Λ − Λ 1 ) f = ( u − u 1 ) | ∂ Ω with � � ∀ ϕ ∈ H 1 γ ∇ ( u − u 1 ) · ∇ ϕ d V = ( 1 − γ ) ∇ u 1 · ∇ ϕ d V ⋄ (Ω) , Ω I → Factorization of the type: Π = A ∗ T A • Characterization of R ( A ∗ ) = R (Π 1 / 2 ) Functions harmonic in Ω \I with homog. Neumann B.C. on ∂ Ω • Theorem: For any d ∈ S d − 1 and z ∈ Ω , let g z , d = d · ∇ z N ( · , z ) | ∂ Ω then 1 / 2 ) z ∈ I if and only if g z , d ∈ R (Π • Picard criterion: ∞ | ( g z , d , ψ j ) L 2 ( ∂ Ω) | 2 � z ∈ I if and only if the series converges λ j j = 1 Bruhl , Hanke , Kirsch , . . . C. Bellis & al. Noise Subspace Projection for EIT PICOF’12 · 4/4/12 7 / 18

  12. Existing sampling approach 2/2 • Extended inclusions: Separate influence of unknown inclusion from that of known background Using that Π f = (Λ − Λ 1 ) f = ( u − u 1 ) | ∂ Ω with � � ∀ ϕ ∈ H 1 γ ∇ ( u − u 1 ) · ∇ ϕ d V = ( 1 − γ ) ∇ u 1 · ∇ ϕ d V ⋄ (Ω) , Ω I → Factorization of the type: Π = A ∗ T A • Characterization of R ( A ∗ ) = R (Π 1 / 2 ) Functions harmonic in Ω \I with homog. Neumann B.C. on ∂ Ω • Theorem: For any d ∈ S d − 1 and z ∈ Ω , let g z , d = d · ∇ z N ( · , z ) | ∂ Ω then 1 / 2 ) z ∈ I if and only if g z , d ∈ R (Π • Picard criterion: ∞ | ( g z , d , ψ j ) L 2 ( ∂ Ω) | 2 � z ∈ I if and only if the series converges λ j j = 1 Bruhl , Hanke , Kirsch , . . . C. Bellis & al. Noise Subspace Projection for EIT PICOF’12 · 4/4/12 7 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend