a new control parameter for the glass transition of
play

A new control parameter for the glass transition of glycerol. P. - PowerPoint PPT Presentation

A new control parameter for the glass transition of glycerol. P. Gadige, S. Albert, C. Wiertel-Gasquet, R. Tourbot, F. Ladieu Service de Physique de lEtat Condens (CNRS, MIPPU/ URA 2464), DSM/IRAMIS/ SPEC/SPHYNX CEA Saclay, France Main


  1. A new control parameter for the glass transition of glycerol. P. Gadige, S. Albert, C. Wiertel-Gasquet, R. Tourbot, F. Ladieu Service de Physique de l’Etat Condensé (CNRS, MIPPU/ URA 2464), DSM/IRAMIS/ SPEC/SPHYNX CEA Saclay, France Main Funding: Additionnal Funding:

  2. The most emblematic claim of this work : Glycerol (T g =187K at E st =0) T g (E st )-T g (0) , [mK] 6  E st is a new control parameter in Glycerol. 4  Previously, the unique 2 way to change Tg was the Pressure P 0 -4 -2 0 2 4 Est , [MV/m]  Small effect: discovered through a nonlinear technique (see L’Hôte , Tourbot, Ladieu, Gadige PRB 90, 104202 (2014) )  As for P exp ts , the most interesting is not T g ( P ) in itself but what we learn about the glass transition when varying the control parameter.

  3. Outline: I) Motivations for nonlinear experiments • What happens around Tg ? • Dynamical Heterogeneities • Special interest of nonlinear responses ! II) Our specially designed experiment → it works ! III) Results on Glycerol • Order of magnitude and comparison to the Box model • Relation to N corr • Tg shift Summary and Perspectives.

  4. Outline: I) Motivations for nonlinear experiments • What happens around Tg ? • Dynamical Heterogeneities • Special interest of nonlinear responses ! II) Our specially designed experiment → it works ! III) Results on Glycerol • Order of magnitude and comparison to the Box model • Relation to Ncorr • Tg shift Summary and Perspectives.

  5. What happens around Tg ? t α Glass Supercooled Liquid Relaxation time t a liquid (Crystal) t a =100s t α ~ 10 -12 s T T g T m Angell, Science 267 (1995) Polybutadiene, T g  180K Log ( viscosity )  t a 12 E a S(q) [a.u.]  t 10 T ~ ~ e a 8 6 E a  when T  4 2  Correlations  0 when T  -2 -4 0 0.2 0.4 0.6 0.8 1.0 T g / T No (static) order T g / T How to combine the existence of correlations with the absence of order ?

  6. Dynamical Heterogeneities in supercooled liquids   • N corr = average number of dynamically correlated molecules : 3 N corr … directly observed in granular matter …Experimentally, the heterogeneous nature or in numerical simulations. of the dynamics has been established through various breakthroughs: Example : numerical simulations on soft • NMR experiments Tracht et al. PRL81, 2727 (98), spheres : J. Magn. Res. 140 460 (99),… • Local measurements E. Vidal Russell and N.E. Israeloff , Nature 408, 695 (2000). Hurley, Harowell, « clusters » PRE, 52, of 30-90 1694, (1995) monomers  Hole burning experiments When T  : N corr would  , which would explain why t a increases so much

  7. Dynamical Heterogeneities and NHB.  Many improvements since Schiener, Böhmer, Loidl, Chamberlin Science, 274 , 752, (1996) e.g. R.Richert’s group: PRL, 97 , 095703 (2006); PRB 75 , 064302 (2007); EPJB, 66 , 217, (2008); PRL, 104 , 085702, (2010)…  The central idea in Schiener et al ’s seminal paper in 1996: e (t, w ) : should be globally No distribution of t shifted in w Strong field (V 0 ) at W e (t, w ) : should be mainly A distribution of t ’s exists modified close to W Non Res Hole Burning:  supercooled dynamics IS heterogeneous (at least in time)  … Can nonlinear experiments give MORE than originally expected ??....

  8. Outline: I) Motivations for nonlinear experiments • What happens around Tg ? • Dynamical Heterogeneities • Special interest of nonlinear responses ! II) Our specially designed experiment → it works ! III) Results on Glycerol • Order of magnitude and comparison to the Box model • Relation to N corr • Tg shift Summary and Perspectives.

  9. The prediction of Bouchaud-Biroli (  B&B): PRB 72, 064204 (2005)  DH characteri sation AND N corr « large enough »           g ( r , t ) p ( 0 , 0 ) p ( 0 , t ) p ( r , 0 ) p ( r , t ) 4 c P  c  c  w  3 i t E E ... E ( t ) E e e Lin 3 0 e c 2 3 a   c w  wt 0 s ( , ) ( ) ( ) T N T H T a 3 corr k T B H Natural scale of c 3 N corr = number of dynamic. correlated molec. c s = static value of c Lin t a (T) : typical relaxation time a 3 = molecular volume H: scaling function wt a « 1 » Systematic c 3 ( w ,T) measurements to test the prediction and possibly get N corr (T)

  10. The issue of interpretations : Box Model versus B&B Box model assumptions (designed for NHB): → Each DH « k » has a Debye dynamics. {t k } chosen to recover c lin ( w ) at each given T. → Applying E: each DH « k » is heated by d T k ( t therm ) with t therm  t k .  as {t k } t a heat diffusion over one DH takes a macroscopic time close to Tg.  d  ( T ) heat power density P t  d  d k   d 2 T k , Lin T k ~ E 3 P P T ~ E  k k  k k , Lin k t c T c w c 2 (heat power density ~ ' ' E ) ( P ~ E ) k k , Lin k c 3 For a pure ac field E ac cos( w t): c 3 does NOT contain w and T dependences are N corr (Box model is qualitatively similar in the Box space free) model and in B&B wt a « 1 » c 3 ( w ,T) : N corr (T) or not ?

  11. Some experiments done since B&B’s prediction (2005)  c ( 1 ) Im( ) E ² c c d e  ( 1 ) ( 3 ) 3 as well as B&B: ln ' ' Box model : c 3 3 Im( ) Lin e.g. R.Richert’s group: PRL, 97 , 095703 Our group : PhD’s of C. Thibierge and C. Brun . (2006); PRB 75 , 064302 (2007); EPJB, 66 , PRL (2010); (2012) PRB (2011 ) (2012); JChem Phys (2011) , 217, (2008); PRL, 104 , 085702, (2010)… Augsburg group : PhD of Th. Bauer : 2 PRL’s in (2013); etc… → Very good fits at 1 w (better than at 3 w → Test of B&B’s prediction: OK → Accounts for the transient regime at 1 w → Evolution of N corr (T) or of N corr (t a ) → Several liquids tested ( Bauer, Lunkenheimer, → Several liquids tested (Richert PRL (2007)) Loidl, PRL 111 , 225702 (2013) ) Using E st will shed a new light on this interpretation issue

  12. Outline: I) Motivations for nonlinear experiments II) Our specially designed experiment III) Results on Glycerol • Order of magnitude and comparison to the Box model • Relation to N corr • Tg shift Summary and Perspectives.

  13. Dielectric setup and orders of magnitude V S (t) Supercooled liquid, e P controlled T For “low enough” E      P ( t )     c   c    ... ' ' ' ' ' ' ' ' ' ( t t ' ) E ( t ' ) dt ' t t , t t , t t E ( t ) E ( t ) E ( t ) dt dt dt e lin 3 1 2 3 1 2 3 1 2 3     0 Linear term First non-linear term  w  E ( t ) E ac cos( t ) E st      1  c w  w  P ( t ) P c w  w  c w  w 2 ( 1 ) j t  3 ( 1 ) j t ( 3 ) j 3 t 3 E E Re ( ) e even harmonics E Re 3 ( ) e ( ) e Lin st ac 2 ; 1 e ac 3 3 4 0 {  {  c w  c c w  c ( 1 ) ( 1 ) ( ) F . T . ( ) . . F T  w w w w ( , , ) ( 0 , 0 , ) 3 3 2 ; 1 3 {  c w  c ( 3 ) ( ) F . T . w w w ( , , ) 3 3 cubic terms 6 10      Specially designed setup 4 For E 1 MV/m, 10 - linear term

  14. Our setup to measure cubic susceptibilities C. Thibierge et al, RSI Bridge with two glycerol-filled capacitors of different thicknesses 79 , 103905 (2008))      3 V ac e j w t + V st P P  w c w    3 ( 1 ) j t Lin E Re ( ) e   e ac 3   4 w 1 Z 2 = thick 0   Z 1 = thin  c w  w 2 ( 1 ) j t capacitor 3 E E Re ( ) e capacitor st ac 2 ; 1 ( 2 × thin ) D V = V meas (V ac ,V st ) V meas - V meas (V ac ,0) 2 I Lin + I Lin + -3 10 r 1 r 2 8 I NonlLin I NonlLin 300 Modulus, [V] Phase, [deg] -4 200 10  P  100 N.B. : I S  t -5 10 0  when r 1 Z 1 =r 2 Z 2 : P lin cancels -100 -6 gives P NonLin 10 1 10 V st , [V] D D V~ V st V 2 V ac c  ( 1 ) 2 ; 1 2 Phase ( D V) = cte V V st ac

  15. Outline: I) Motivations for nonlinear experiments II) Our specially designed experiment III) Results on Glycerol • Order of magnitude and comparison to the Box model • Relation to N corr • Tg shift Summary and Perspectives. 1,E-08 C or G/ w [Farads] wt a  f/f a  NB: c ~ ' Lin 1,E-09 f a  peak of c lin ’’( w ) c ~ ' ' Lin |c lin ( w )| has no peak 1,E-10 1,E+00 1,E+02 1,E+04 1,E+06 frequency [Hz]

  16. c w ( 1 ) Main features of ( , T ) 2 ; 1 50 -15 10 At constant T: 0  humped shape 2;1 ), [Deg] 2 ] for | c 2;1 -50 (1) | 2 / V 197K (f a = 0.3 Hz)  maximum 202K (f a = 2.1 Hz) 2;1 |, [m -100 211K (f a = 60 Hz) happens in the -16 (1) 10 218K (f a = 520 Hz) Arg( c range of f a (1) -150 | c Scaling of the -200 hump in T -17 10 -250 0.1 1 10 100 f/f a Same qualitative trends as for c 3 (1) and c 3 (3)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend