a miniaturized predicativity slow growing analogues
play

A Miniaturized Predicativity slow growing analogues. Stanley S. - PowerPoint PPT Presentation

A Miniaturized Predicativity slow growing analogues. Stanley S. Wainer 1 (Leeds UK) HAPPY BIRTHDAY GERHARD December 2013. 1 Earlier parts of this work were done jointly with Elliott Spoors and were partially supported by the 2012


  1. A Miniaturized “Predicativity” – “slow growing” analogues. Stanley S. Wainer 1 (Leeds UK) HAPPY BIRTHDAY GERHARD December 2013. 1 Earlier parts of this work were done jointly with Elliott Spoors and were partially supported by the 2012 Isaac Newton Institute programme: “Syntax and Semantics; the legacy of A. Turing”.

  2. § 0. Input–Output Theories for Grzegorczyk Hierarchy. ◮ EA ( I ; O ) is a 2-sorted theory with elementary strength. ◮ EA ( I ; O ) ⊂ EA ( I ; O ) + ⊢ E 3 ( x : I ) ↓ . ◮ EA ( I 1 ; O ) + ( I 2 ) + ⊢ E 4 ( x : I 2 ) ↓ . ◮ EA ( I 1 , I 2 , . . . , I k ; O ) + ⊢ E k +2 ( x : I k ) ↓ . ◮ EA ( I 1 , I 2 , . . . I ω ; O ) ∞ ≺ Γ 0 ⊢ E ω ( x : I ω ) ↓ . The Main Principles: (1) Numerical inputs govern induction-length. (2) Values computable from inputs only may be used as input. (3) There may be many “increasingly refined” levels of input.

  3. § 1. EA ( I ; O ) – Leivant (1995), Ostrin-Wainer (2005), ◮ Quantified numerical “output” variables a , b , c , . . . . ◮ Unquantified “input” variables x , y , z , . . . (constants). ◮ Terms 0 , Succ , + , × , π, π 0 , π 1 , . . . with usual axioms. ◮ “Predicative/bounded/pointwise Induction” up to x : A (0) ∧ ∀ a ( A ( a ) → A ( a + 1)) → ∀ a ≤ xA ( a ). ◮ Define f ( x ) ↓ ≡ ∃ aC f ( x , a ) for some Σ 1 formula C f . ◮ Then EA ( I ; O ) ⊢ f ( x ) ↓ if and only if f is elementary.

  4. EA ( I ; O ) ⊂ EA ( I ; O ) + – Spoors-Wainer (2012) EA ( I ; O ) is not “user-friendly” since composition of functions f : I → O cannot be proved straightforwardly – however Wirz (2005) developed a variety of derived rules showing this. To remedy this, add a Σ 1 -“Reflection Rule” as in Cantini (2002): Σ( � x ) , ∃ aA ( a ,� x ) Σ( � x ) , ∃ yA ( y ,� x ) where the only free parameters are inputs � x . And add I -quantifiers: Γ , A ( x ) Γ , A ( t ( � x )) Γ , ∃ yA ( y ) . Γ , ∀ yA ( y ) Note: the inductions are still restricted to EA ( I ; O ) formulas only. Then if ⊢ f ( x ) ↓ and ⊢ g ( x ) ↓ we can directly prove ∀ yf ( y ) ↓ and (by reflection) ∃ y ( g ( x ) = y ). Therefore EA ( I ; O ) + ⊢ f ( g ( x )) ↓ .

  5. § 2. EA ( I 1 , I 2 ; O ) = EA ( I 1 ; O ) + ( I 2 ) + . Add to EA ( I 1 ; O ) + a new layer of I 2 –inputs u , v , . . . and a new level of inductions: A (0) ∧ ∀ a ( A ( a ) → A ( a + 1)) → A ( u ) where A is now any EA ( I 1 ; O ) + formula. Then: ◮ EA ( I 1 ; O ) ⊢ 2 x ↓ ◮ EA ( I 1 ; O ) + ⊢ ∀ x ∃ y (2 x = y ) ◮ EA ( I 1 ; O ) + ⊢ ∃ y (2 x a = y ) → ∃ y (2 x a +1 = y ) ◮ EA ( I 1 ; O ) + ( I 2 ) ⊢ ∀ x ∃ y (2 x u = y ) Now add I 2 –quantifier rules and a Σ 1 –reflection rule for I 2 . This allows compositions of the superexponential etc., so EA ( I 1 ; O ) + ( I 2 ) + ⊢ E 4 ( u ) ↓ .

  6. § 3. Pointwise Transfinite Induction. Usual transfinite induction TI(A, α ) may be written: A (0) ∧ ∀ γ ( A ( γ ) → A ( γ + 1)) ∧ ∀ λ ( ∀ iA ( λ i ) → A ( λ )) → A ( α ) Definition “Weak, pointwise transfinite induction” PTI(A x ,α ): A (0) ∧ ∀ γ ( A ( γ ) → A ( γ + 1)) ∧ ∀ λ ( ∀ i ≤ xA ( λ i ) → A ( λ )) → A ( α ) or A (0) ∧ ∀ γ ( A ( γ ) → A ( γ + 1)) ∧ ∀ λ ( A ( λ x ) → A ( λ )) → A ( α ) . The idea goes back to U. Schmerl (1982). This is enough to define the Slow Growing function G α ( x ) and is equivalent to Bounded Induction “up to” G α ( x ): A (0) ∧ ∀ a ( A ( a ) → A ( a + 1)) → ∀ a ≤ G α ( x ) A ( a ) .

  7. Tree Ordinals α ≺ Γ 0 and their G α ’s. Definition ◮ α ∈ Ω if α = 0 or ∃ β ∈ Ω( α = β + 1) or α : N → Ω. ◮ G : N × Ω → N is given by G n (0) = 0 , G n ( β + 1) = G n ( β ) + 1 . G n ( λ ) = G n ( λ n ) . ◮ ψ : Ω × Ω → Ω is given by ψ α +1 ( β ) = ψ 2 β ψ 0 ( β ) = β +2 β , α ( β ) , ψ λ ( β ) = sup ψ λ n ( β ) . ◮ F 0 ( m ) = m + 2 m , F n +1 ( m ) = F 2 m n ( m ) . Then F ω ( n ) = F n ( n ). Theorem (i) | ψ α ( ω ) | = Veblen φ α (0) for α ≻ 0 . (ii) G n ( ψ α ( β )) = F G n ( α ) ( G n ( β )) . So G n ( ψ α ( α )) = F ω ( G n ( α )) .

  8. PTI ( α ) in EA ( I , .. ; O ) theories. ◮ Recall: For α ≺ ε 0 , G ( α ) ∈ E 3 , but G ( ε 0 ) �∈ E 3 . ◮ Hence: EA ( I ; O ) ⊢ PTI ( α ≺ ε 0 ), but EA ( I ; O ) �⊢ PTI ( ε 0 ). ◮ Thus: � EA ( I ; O ) + � W = ε 0 = φ 1 (0). ◮ Similarly: � EA ( I 1 , I 2 ; O ) + � W = φ 2 (0) etcetera. ◮ And: � EA ( I 1 , . . . , I ω ; O ) ∞ ≺ Γ 0 � W = Γ 0 . ◮ Wainer-Williams (2005): � ID 1 ( I ; O ) � W = φ ε Ω+1 (0) but ID 1 ( I ; O ) ≡ PA . Note: J¨ ager-Probst (2013) and Ranzi-Strahm (2013), SID ν have full (unstratified) numerical induction in the base theory.

  9. § 4. EA ( I 1 , I 2 , . . . , I ω ; O ) ∞ ≺ Γ 0 . Sequents are: n : I k ; . . . , m : I i ⊢ α Γ with ω ≥ k > . . . > i . Logic Rules are as follows where β ≺ n α ≺ Γ 0 : n : I k ; . . . , m : I i ⊢ β Γ , A ( ℓ ) ( ∃ I i ) n : I k ; . . . , m : I i ⊢ β C ℓ n : I k ; . . . , m : I i ⊢ α Γ , ∃ x ( I i ( x ) ∧ A ( x )) ( ∀ I i ) { n : I k ; . . . , max( m , j ) : I i ⊢ β Γ , A ( j ) } j n : I k ; . . . , m : I i ⊢ α Γ , ∀ x ( I i ( x ) → A ( x )) level( A ) < k and ( ∨ ) , ( ∧ ) and (Cut) as usual, together with Computation Rules: n ; . . . m ′ ⊢ β ( C ) n ; . . . m ⊢ β C m ′ C ℓ ( Ax ) n ; . . . , m ⊢ α C ℓ if ℓ ≤ q ( m ) n ; . . . m ⊢ α C ℓ

  10. Reading Off Bounding Functions. Ordinal assignment is “slow growing”: |{ β : β ≺ n α }| = G n ( α ). Lemma C k then k ≤ q G n (2 α ) ( m ) . If n ; m ⊢ α Theorem (Basic bounding principle) If EA(I;O) + ⊢ f ( x ) ↓ then, by embedding and cut-reduction, there is an α ≺ ε 0 such that for every x := n, n ; − ⊢ α 0 ∃ aC f ( n , a ) . Then ∃ a ≤ kC f ( n , a ) where k = q G n (2 α ) (0) . So f ∈ E 3 . Lemma ( E 4 bounding) Let B 1 ( α, n ) = q G n (2 α ) (0) be the bounding function at level 1 . Then B 2 ( α, n ) = B 1 ( α ) G n (2 α ) ( n ) is the bound at level 2 : n 2 ; n 1 , − ⊢ α C k ⇒ k ≤ B 2 ( α, max( n 2 , n 1 )) . This bound is E 4 -definable. Etcetera.

  11. § 5. Level ω – Ackermann. Suppressing ordinal bounds, EA ( I 1 , I 2 , . . . , I ω ; O ) + ∞ proves: ∀ x r ∃ y r ( F 2 a r ( x ) = y ) → ∀ x r ∃ y r ( F 2 a +1 ( x ) = y ) r Hence by induction on a , using repeated cuts: k : I r +1 ; ⊢ ∀ x r ∃ y r ( F r ( x ) = y ) → ∀ x r ∃ y r ( F 2 k r ( x ) = y ) By Cut on ∀ x r ∃ y r ( F r ( x ) = y ) using k : I r +1 ⊢ C k : I r , k : I r +1 ⊢ ∃ y r ( F r +1 ( k ) = y ) Then k : I r +1 ⊢ ∃ y r +1 ( F r +1 ( k ) = y ) so ∀ x r +1 ∃ y r +1 ( F r +1 ( x ) = y ). r : I ω ⊢ ∀ x r ∃ y r ( F r ( x ) = y ). So r : I ω ⊢ ∃ y ω ( F ω ( r ) = y ). But note: r : I ω ⊢ C r : I r . Therefore

  12. § 6. “Predicativity” in EA ( I 1 , . . . , I ω ; O ) ∞ ≺ Γ 0 . ◮ Sequents are: n : I k ; .. m : I i ⊢ α Γ where ordinal bounds α ≺ Γ 0 are autonomously generated according to the rule: PTI ( β ) ⇒ PTI ( ψ β ( β )). ◮ This holds because if G n ( β ) is computable in the system, so is G n ( ψ β ( β )) = F G n ( β ) ( G n ( β )) = F ω ( G n ( β )) . Only finite iterations of F ω are possible, so can’t reach Γ 0 . ◮ Collapsing Principle: n : I ω ; m : I i ⊢ α m : I i ; ⊢ a C k ⇒ C k where a = G n ( ψ α ( α )) = F ω ( G n ( α ). Computational bounds are finite F -terms, elementary in F ω . ◮ ≺ Γ 0 ⊢ E ω ( x : I ω ) ↓ EA ( I 1 , . . . I ω ; O ) ∞ � EA ( I 1 , . . . I ω ; O ) ∞ ≺ Γ 0 � W = Γ 0 .

  13. References 1) A. Cantini : “Polytime, combinatory logic and positive safe induction”. Archive for Math. Logic Vol. 41 (2002) 169-189. 2) G. J¨ ager & D. Probst : “A proof theoretic analysis of theories for stratified inductive definitions”, new, to appear. 3) D. Leivant : “Intrinsic theories and computational complexity”. In D. Leivant (Ed) LCC’94, LNCS Vol. 960 (1995) 177-194. 4) G. Ostrin & S. Wainer : “Elementary arithmetic”. Annals of Pure and Applied Logic Vol. 133 (2005) 275-292. 5) F. Ranzi & T. Strahm : “A note on the theory SID <ω of stratified induction”, new, to appear. 6) H. Schwichtenberg & S. Wainer : “Proofs and Computations”. ASL Perspectives in Logic, CUP (2012) 465 + xiii. 7) E. Spoors & S. Wainer : “A hierarchy of ramified theories below PRA”. To appear in a volume in honour of Helmut Schwichtenberg, Ontos Math. Logic (2012).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend