a guaranteed a posteriori error estimator for certified
play

A guaranteed a posteriori error estimator for certified boundary - PowerPoint PPT Presentation

A guaranteed a posteriori error estimator for certified boundary variation algorithm Matteo Giacomini ees, CMAP - Centre de Math ematiques Appliqu Ecole Polytechnique IPSA - Institut Polytechnique des Sciences Avanc ees 6 th


  1. A guaranteed a posteriori error estimator for certified boundary variation algorithm Matteo Giacomini ees, ´ CMAP - Centre de Math´ ematiques Appliqu´ Ecole Polytechnique IPSA - Institut Polytechnique des Sciences Avanc´ ees 6 th Workshop FreeFem++ Days - LJLL UPMC, December 11 th 2014 Joint work with Olivier Pantz (CMAP ´ Ecole Polytechnique) and Karim Trabelsi (IPSA) Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 1 / 20

  2. Outline 1 Shape optimization and shape identification problems ◮ A scalar model problem ◮ Differentiation with respect to the shape ◮ The boundary variation algorithm 2 A posteriori estimators of the error in the shape derivative ◮ Goal-oriented residual-type error estimator ◮ Validation of the goal-oriented estimator 3 Adaptive shape optimization procedure ◮ A first test case ◮ Improved adaptive shape optimization procedure Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 2 / 20

  3. Outline Shape optimization and shape identification problems 1 A scalar model problem Differentiation with respect to the shape The boundary variation algorithm A posteriori estimators of the error in the shape derivative 2 Goal-oriented residual-type error estimator Validation of the goal-oriented estimator Adaptive shape optimization procedure 3 A first test case Improved adaptive shape optimization procedure Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 3 / 20

  4. Electrical Impedance Tomography Neumann problem (N):  − k ∆ u N + u N = 0 in Ω � Γ     � u N � = 0 on Γ  � k ∇ u N · n � = 0 on Γ    k 1 ∇ u N · n = g on ∂ Ω Dirichlet problem (D):  − k ∆ u D + u D = 0 in Ω � Γ     � u D � = 0 on Γ  � k ∇ u D · n � = 0 on Γ    k = k 0 χ ω + k 1 (1 − χ ω ) u D = U D on ∂ Ω Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 4 / 20

  5. Electrical Impedance Tomography Neumann problem (N):  − k ∆ u N + u N = 0 in Ω � Γ     � u N � = 0 on Γ  � k ∇ u N · n � = 0 on Γ    k 1 ∇ u N · n = g on ∂ Ω Dirichlet problem (D):  − k ∆ u D + u D = 0 in Ω � Γ     � u D � = 0 on Γ  � k ∇ u D · n � = 0 on Γ    k = k 0 χ ω + k 1 (1 − χ ω ) u D = U D on ∂ Ω Objective functional: � � J ( ω ) = 1 k ∇ ( u N ( ω ) − u D ( ω )) · ∇ ( u N ( ω ) − u D ( ω )) d x +1 ( u N ( ω ) − u D ( ω )) 2 d x 2 2 Ω Ω Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 4 / 20

  6. Electrical Impedance Tomography � � � a ( u , v ) = k ∇ u · ∇ v + uv d x Ω Neumann problem (N): u N ∈ H 1 (Ω) ∀ v ∈ W N = H 1 (Ω) a ( u N , v ) = F N ( v ) � F N ( v ) = gv d σ ∂ Ω Dirichlet problem (D): u D ∈ H 1 U D (Ω) ∀ v ∈ W D = H 1 a ( u D , v ) = F D ( v ) 0 (Ω) F D ( v ) = 0 k = k 0 χ ω + k 1 (1 − χ ω ) Objective functional: J ( ω ) = 1 2 a ( u N ( ω ) − u D ( ω ) , u N ( ω ) − u D ( ω )) Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 4 / 20

  7. Shape optimization approach PDE-constrained optimization problem: ω ∗ = argmin ω J ( ω ) = ⇒ Optimization variable: Shape and location of the inclusion ω Shape optimization startegy: Given the domain Ω (0) , set ℓ = 0 and iterate: solutions u ( ℓ ) and u ( ℓ ) 1. Compute the D ; N 2. Compute a descent direction θ ( ℓ ) and an admissible step µ ( ℓ ) ; interface Γ ( ℓ +1) = ( I + µ ( ℓ ) θ ( ℓ ) )Γ ( ℓ ) ; 3. Move the not fulfilled , ℓ = ℓ + 1 and repeat. 4. While stopping criterion Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 5 / 20

  8. Shape optimization approach PDE-constrained optimization problem: ω ∗ = argmin ω J ( ω ) = ⇒ Optimization variable: Shape and location of the inclusion ω Shape optimization startegy: Given the domain Ω (0) , set ℓ = 0 and iterate: solutions u ( ℓ ) and u ( ℓ ) 1. Compute the D ; N 2. Compute a descent direction θ ( ℓ ) and an admissible step µ ( ℓ ) ; interface Γ ( ℓ +1) = ( I + µ ( ℓ ) θ ( ℓ ) )Γ ( ℓ ) ; 3. Move the not fulfilled , ℓ = ℓ + 1 and repeat. 4. While stopping criterion Shape optimization Classical optimization ω ∈U ad J ( ω ) min , J : U ad → R f : R n → R x ∈ R n f ( x ) min , U ad = { Open sets in Ω ⊂ R d } Steepest descent direction Gradient-based descent direction at point x : v ( x ) = − ∇ f ( x ) at ω : θ s.t. � dJ ( ω ) , θ � < 0 x ( ℓ +1) = x ( ℓ ) + µ ( ℓ ) v ( x ( ℓ ) ) ω ( ℓ +1) = ( I + µ ( ℓ ) θ ( ℓ ) ) ω ( ℓ ) Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 5 / 20

  9. Shape derivative Let θ ∈ W 1 , ∞ (Ω , R 2 ) be an admissible smooth deformation of Ω s.t. the external boundary is fixed: θ = 0 on ∂ Ω = ⇒ Small perturbation of the domain: Ω( θ ) = ( I + t θ )Ω If the map J Ω : θ �→ J (Ω( θ )) is differentiable at θ = 0 , we define the shape derivative: J (( I + t θ )Ω) − J (Ω) � dJ ( ω ) , θ � = �J ′ Ω (0) , θ � = lim t t ց 0 Shape derivative of the objective functional J ( ω ) 1 : � � dJ ( ω ) , θ � =1 k M ( θ ) ∇ ( u N ( ω ) + u D ( ω )) · ∇ ( u N ( ω ) − u D ( ω )) d x 2 Ω � − 1 ∇ · θ ( u N ( ω ) + u D ( ω ))( u N ( ω ) − u D ( ω )) d x 2 Ω M ( θ ) = ∇ θ + ∇ θ T − ( ∇ · θ ) I 1 O. Pantz. Sensibilit´ e de l’´ equation de la chaleur aux sauts de conductivit´ e . C. R. Acad. Sci. Paris, Ser. I(341):333-337 (2005) Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 6 / 20

  10. The boundary variation algorithm Gradient-based strategy: ∀ δθ ∈ [ H 1 (Ω)] d � θ , δθ � [ H 1 (Ω)] d + � dJ ( ω ) , δθ � = 0 = ⇒ Descent direction: θ such that � dJ ( ω ) , θ � < 0 There are two possible approaches to numerical shape optimization: Discretize-then-Optimize Optimize-then-Discretize Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 7 / 20

  11. The boundary variation algorithm Gradient-based strategy: ∀ δθ ∈ [ H 1 (Ω)] d � θ , δθ � [ H 1 (Ω)] d + � dJ ( ω ) , δθ � = 0 = ⇒ Descent direction: θ such that � dJ ( ω ) , θ � < 0 There are two possible approaches to numerical shape optimization: Discretize-then-Optimize Optimize-then-Discretize = ⇒ Discretized gradient-based strategy: ∀ δθ h ∈ [ X p � θ h , δθ h � [ X p h ] d + � d h J , δθ h � ≃ 0 h ] d ⇒ Certified descent direction: θ h � d h J , θ h � + | E h | < 0 = such that Numerical error in the shape derivative: E h = � dJ ( ω h ) , θ h � − � d h J , θ h � Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 7 / 20

  12. Why coupling error estimates with shape optmization? Initial interface Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 8 / 20

  13. Why coupling error estimates with shape optmization? Reconstructed interface Objective functional Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 8 / 20

  14. The adaptive boundary variation algorithm Given the domain Ω (0) and tol = 10 − 8 , set the ℓ = 0 and iterate: mesh T ( ℓ ) ⊂ Ω ( ℓ ) ; 1. Construct a coarse h solutions u h ( ℓ ) and u h ( ℓ ) 2. Compute the primal ; N D direction θ h ( ℓ ) ; 3. Compute a descent 4. Compute the upper bound E of the numerical error | E h | ; 5. While � d h J , θ h ( ℓ ) � + E > 0 , repeat: mesh T ( ℓ ) (a) Adapt the computational ; h solutions u h ( ℓ ) and u h ( ℓ ) (b) Re -compute the primal ; N D direction θ h ( ℓ ) ; (c) Re -compute a descent (d) Re-compute the upper bound E of | E h | and � d h J , θ h ( ℓ ) � + E ; step size µ h ( ℓ ) ; 6. Compute an admissible = ( I + µ h ( ℓ ) θ h ( ℓ ) ) T ( ℓ ) 7. Move the mesh T ( ℓ +1) ; h h 8. While |� d h J , θ h ( ℓ ) �| + E > tol, ℓ = ℓ + 1 and repeat. Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 9 / 20

  15. The adaptive boundary variation algorithm Given the domain Ω (0) and tol = 10 − 8 , set the ℓ = 0 and iterate: mesh T ( ℓ ) ⊂ Ω ( ℓ ) ; 1. Construct a coarse h solutions u h ( ℓ ) and u h ( ℓ ) 2. Compute the primal ; N D direction θ h ( ℓ ) ; 3. Compute a descent 4. Compute the upper bound E of the numerical error | E h | ; 5. While � d h J , θ h ( ℓ ) � + E > 0 , repeat: mesh T ( ℓ ) (a) Adapt the computational ; h solutions u h ( ℓ ) and u h ( ℓ ) (b) Re -compute the primal ; N D direction θ h ( ℓ ) ; (c) Re -compute a descent (d) Re-compute the upper bound E of | E h | and � d h J , θ h ( ℓ ) � + E ; step size µ h ( ℓ ) ; 6. Compute an admissible = ( I + µ h ( ℓ ) θ h ( ℓ ) ) T ( ℓ ) 7. Move the mesh T ( ℓ +1) ; h h 8. While |� d h J , θ h ( ℓ ) �| + E > tol, ℓ = ℓ + 1 and repeat. Dec. 11 th 2014 ( FreeFem++ ) M. Giacomini Error estimates for shape optimization 9 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend