a general procedure to combine estimators
play

A general procedure to combine estimators Fr ed eric Lavancier and - PowerPoint PPT Presentation

Introduction Method Theory Estimation of Several parameters Simulations Conclusion A general procedure to combine estimators Fr ed eric Lavancier and Paul Rochet Laboratoire de Math ematiques Jean Leray University of Nantes


  1. Introduction Method Theory Estimation of Σ Several parameters Simulations Conclusion A general procedure to combine estimators Fr´ ed´ eric Lavancier and Paul Rochet Laboratoire de Math´ ematiques Jean Leray University of Nantes

  2. Introduction Method Theory Estimation of Σ Several parameters Simulations Conclusion Introduction 1 The method 2 Theoretical results 3 Estimation of the MSE matrix Σ 4 Generalization to several parameters 5 Simulations 6 Conclusion 7

  3. Introduction Method Theory Estimation of Σ Several parameters Simulations Conclusion The problem Let θ be an unknown quantity in a statistical model. Consider a collection of k estimators T 1 , ..., T k of θ . Aim: combining these estimators to obtain a better estimate. Natural approach : choose a suitable combination k � ˆ λ j T j = λ ⊤ T , λ ∈ Λ ⊆ R k . θ λ = j =1 where T = ( T 1 , ..., T k ) ⊤ . This amounts to find ˆ λ . Standard settings : Selection: Λ = { (1 , 0 , . . . , 0) , (0 , 1 , 0 , . . . , 0) , . . . , (0 , . . . , 0 , 1) } Convex: Λ = { λ ∈ R k : λ j ≥ 0 , � j λ j = 1 } Affine: Λ = { λ ∈ R k : � j λ j = 1 } Linear: Λ = R k

  4. Introduction Method Theory Estimation of Σ Several parameters Simulations Conclusion The problem Let θ be an unknown quantity in a statistical model. Consider a collection of k estimators T 1 , ..., T k of θ . Aim: combining these estimators to obtain a better estimate. Natural approach : choose a suitable combination k � ˆ λ j T j = λ ⊤ T , λ ∈ Λ ⊆ R k . θ λ = j =1 where T = ( T 1 , ..., T k ) ⊤ . This amounts to find ˆ λ . Standard settings : Selection: Λ = { (1 , 0 , . . . , 0) , (0 , 1 , 0 , . . . , 0) , . . . , (0 , . . . , 0 , 1) } Convex: Λ = { λ ∈ R k : λ j ≥ 0 , � j λ j = 1 } Affine: Λ = { λ ∈ R k : � j λ j = 1 } Linear: Λ = R k

  5. Introduction Method Theory Estimation of Σ Several parameters Simulations Conclusion Existing works : Aggregation and Averaging Aggregation T 1 , ..., T k are not random (in practice: built from an independent training sample). Non-parametric regression: Y = θ ( X ) + ε � � θ λ ( X ) � 2 + pen( λ ) ˆ � Y − ˆ λ = arg min (Juditsky, Nemirovsky 2000) . λ ∈ Λ Density estimation: X 1 , ..., X n iid with density θ � � n � θ λ � 2 − 2 ˆ � ˆ ˆ λ = arg min θ λ ( X i ) (Rigollet, Tsybakov 2007) . n λ ∈ Λ i =1 Flexibility in the choice of Λ Strong results (oracle inequalities, minimax rates, lower bounds...)

  6. Introduction Method Theory Estimation of Σ Several parameters Simulations Conclusion Existing works : Aggregation and Averaging Averaging Forecast averaging (time series): X 1 , ..., X t Predictors T 1 ( t ) , ..., T k ( t ) � t � � 2 ˆ X i − λ ⊤ T ( i ) λ = arg min λ ∈ Λ (Bates, Granger 1969) . i =1 Model averaging (between misspecifed models) Regression: Y i = µ ( X i ) + ε i ˆ λ minimizes an estimator of the risk Compromise estimator (Hjort, Claeskens 2003), Jackknife (Hansen, Racine 2012), Mallows’ Cp (Benito 2012) Bayesian Model Averaging Likelihood: Y i ∼ f ( y , θ, γ ) Jackknife (Ando, Li 2014), AIC (Hjort, Claeskens 2003)

  7. Introduction Method Theory Estimation of Σ Several parameters Simulations Conclusion Other examples Example 1 : mean and median Let x 1 , . . . , x n be n i.i.d realisations of an unknown distribution on the real line. Assume this distribution is symmetric around some parameter θ ( θ ∈ R ). Two natural choices to estimate θ : the mean T 1 = ¯ x n the median T 2 = x ( n / 2) The idea to combine these two estimators comes from Pierre Simon de Laplace. In the Second Supplement of the Th´ eorie Analytique des Probabilit´ es (1812), he wrote : ” En combinant les r´ esultats de ces deux m´ ethodes, on peut obtenir un r´ esultat dont la loi de probabilit´ e des erreurs soit plus rapidement d´ ecroissante.” [ In combining the results of these two methods, one can obtain a result whose probability law of error will be more rapidly decreasing. ]

  8. Introduction Method Theory Estimation of Σ Several parameters Simulations Conclusion Other examples Example 1 : mean and median Let x 1 , . . . , x n be n i.i.d realisations of an unknown distribution on the real line. Assume this distribution is symmetric around some parameter θ ( θ ∈ R ). Two natural choices to estimate θ : the mean T 1 = ¯ x n the median T 2 = x ( n / 2) The idea to combine these two estimators comes from Pierre Simon de Laplace. In the Second Supplement of the Th´ eorie Analytique des Probabilit´ es (1812), he wrote : ” En combinant les r´ esultats de ces deux m´ ethodes, on peut obtenir un r´ esultat dont la loi de probabilit´ e des erreurs soit plus rapidement d´ ecroissante.” [ In combining the results of these two methods, one can obtain a result whose probability law of error will be more rapidly decreasing. ]

  9. Introduction Method Theory Estimation of Σ Several parameters Simulations Conclusion Laplace considered the combination λ 1 ¯ x n + λ 2 x ( n / 2) with λ 1 + λ 2 = 1. 1. He proved that the asymptotic law of this combination is Gaussian 2. Minimizing the asymptotic variance in λ 1 , λ 2 , he concluded that if the underlying distribution is Gaussian, then the best combination is to take λ 1 = 1 and λ 2 = 0. for other distributions, the best combination depends on the distribution: ” L’ignorance o` u l’on est de la loi de probabilit´ e des erreurs des observations rend cette correction impraticable” [ When one does not know the distribution of the errors of observation this correction is not feasible. ]

  10. Introduction Method Theory Estimation of Σ Several parameters Simulations Conclusion Laplace considered the combination λ 1 ¯ x n + λ 2 x ( n / 2) with λ 1 + λ 2 = 1. 1. He proved that the asymptotic law of this combination is Gaussian 2. Minimizing the asymptotic variance in λ 1 , λ 2 , he concluded that if the underlying distribution is Gaussian, then the best combination is to take λ 1 = 1 and λ 2 = 0. for other distributions, the best combination depends on the distribution: ” L’ignorance o` u l’on est de la loi de probabilit´ e des erreurs des observations rend cette correction impraticable” [ When one does not know the distribution of the errors of observation this correction is not feasible. ]

  11. Introduction Method Theory Estimation of Σ Several parameters Simulations Conclusion Laplace considered the combination λ 1 ¯ x n + λ 2 x ( n / 2) with λ 1 + λ 2 = 1. 1. He proved that the asymptotic law of this combination is Gaussian 2. Minimizing the asymptotic variance in λ 1 , λ 2 , he concluded that if the underlying distribution is Gaussian, then the best combination is to take λ 1 = 1 and λ 2 = 0. for other distributions, the best combination depends on the distribution: ” L’ignorance o` u l’on est de la loi de probabilit´ e des erreurs des observations rend cette correction impraticable” [ When one does not know the distribution of the errors of observation this correction is not feasible. ]

  12. Introduction Method Theory Estimation of Σ Several parameters Simulations Conclusion Other examples Example 2 : Weibull model Let x 1 , . . . , x n i.i.d with respect to the Weibull distribution � x � β − 1 f ( x ) = β e − ( x /η ) β , x > 0 . η η We consider 3 standard methods to estimate β and η the maximum likelihood estimator (ML) the method of moments (MM) the ordinary least squares method or Weibull plot (OLS)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend