a finite volume kinetic fvk framework for unsteady mixed
play

A Finite Volume Kinetic (FVK) framework for unsteady mixed flows in - PowerPoint PPT Presentation

A Finite Volume Kinetic (FVK) framework for unsteady mixed flows in non uniform closed water pipes. Mehmet Ersoy 1, Christian Bourdarias 2 and St ephane Gerbi 3 Euskadi - Kyushu 2011 1. BCAM, Spain, mersoy@bcamath.org 2. LAMASavoie,


  1. A Finite Volume Kinetic (FVK) framework for unsteady mixed flows in non uniform closed water pipes. Mehmet Ersoy 1, Christian Bourdarias 2 and St´ ephane Gerbi 3 Euskadi - Kyushu 2011 1. BCAM, Spain, mersoy@bcamath.org 2. LAMA–Savoie, France, christian.bourdarias@univ-savoie.fr 3. LAMA–Savoie, France, stephane.gerbi@univ-savoie.fr

  2. Outline of the talk Outline of the talk 1 Unsteady mixed flows : PFS equations (Pressurized and Free Surface) Definitions and examples The PFS model 2 A FVK Framework Kinetic Formulation and numerical scheme Numerical results 3 Conclusion and perspectives M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 2 / 26

  3. Outline Outline 1 Unsteady mixed flows : PFS equations (Pressurized and Free Surface) Definitions and examples The PFS model 2 A FVK Framework Kinetic Formulation and numerical scheme Numerical results 3 Conclusion and perspectives M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 3 / 26

  4. Outline Outline 1 Unsteady mixed flows : PFS equations (Pressurized and Free Surface) Definitions and examples The PFS model 2 A FVK Framework Kinetic Formulation and numerical scheme Numerical results 3 Conclusion and perspectives M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 4 / 26

  5. Unsteady mixed flows in closed water pipes ? Free surface area (SL) sections are not completely filled and the flow is incompressible. . . M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 5 / 26

  6. Unsteady mixed flows in closed water pipes ? Free surface area (SL) sections are not completely filled and the flow is incompressible. . . Pressurized area (CH) sections are non completely filled and the flow is compressible. . . M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 5 / 26

  7. Unsteady mixed flows in closed water pipes ? Free surface area (SL) sections are not completely filled and the flow is incompressible. . . Pressurized area (CH) sections are non completely filled and the flow is compressible. . . Transition point • M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 5 / 26

  8. Examples of pipes Orange-Fish tunnel Sewers . . . in Paris Forced pipe problems . . . at Minnesota http://www.sewerhistory.org/grfx/ misc/disaster.htm M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 6 / 26

  9. Outline Outline 1 Unsteady mixed flows : PFS equations (Pressurized and Free Surface) Definitions and examples The PFS model 2 A FVK Framework Kinetic Formulation and numerical scheme Numerical results 3 Conclusion and perspectives M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 7 / 26

  10. The PFS model  ∂ t ( A ) + ∂ x ( Q ) = 0      � Q 2 �    = − g A d   ∂ t ( Q ) + ∂ x A + p ( x, A, E ) dxZ ( x )     + Pr ( x, A, E )      − G ( x, A, E )         − g K ( x, S ) Q | Q |  A � A sl � A sl if E = 0 (FS state) , if E = 0 , with A = S = A ch if E = 1 (P state) , S = | Ω( x ) | if E = 1 , and ... C. Bourdarias, M. Ersoy and S. Gerbi A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme. Int. J. On Finite Volumes , 6(2) :1–47, 2009. M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 8 / 26

  11. Pressure and source terms c 2 ( A − S ) + gI 1 ( x, S ) cos θ p = : mixed pressure law � A ch � d S c 2 Pr = − 1 dx + gI 2 ( S ) cos θ : pressure source term S gAz d G = dx cos θ : curvature source term 1 K = : Manning-Strickler law K 2 s R h ( S ) 4 / 3 M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 9 / 26

  12. The PFS model Mathematical properties The PFS system is strictly hyperbolic for A ( t, x ) > 0 . For regular solutions, the mean speed u = Q/A verifies � u 2 � 2 + c 2 ln( A/S ) + g H ( S ) cos θ + g Z ∂ t u + ∂ x = − g K ( x, S ) u | u | and for u = 0 , we have : c 2 ln( A/ S ) + g H ( S ) cos θ + g Z = cte where H ( S ) is the physical water height. There exists a mathematical entropy E ( A, Q, S ) = Q 2 2 A + c 2 A ln( A/ S ) + c 2 S + gz ( x, S ) cos θ + gAZ which satisfies ∂ t E + ∂ x ( E u + p ( x, A, E ) u ) = − g A K ( x, S ) u 2 | u | � 0 M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 10 / 26

  13. Outline Outline 1 Unsteady mixed flows : PFS equations (Pressurized and Free Surface) Definitions and examples The PFS model 2 A FVK Framework Kinetic Formulation and numerical scheme Numerical results 3 Conclusion and perspectives M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 11 / 26

  14. Finite Volume (VF) numerical scheme of order 1 Cell-centered numerical scheme PFS equations under vectorial form : ∂ t U ( t, x ) + ∂ x F ( x, U ) = S ( t, x ) M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 12 / 26

  15. Finite Volume (VF) numerical scheme of order 1 Cell-centered numerical scheme PFS equations under vectorial form : ∂ t U ( t, x ) + ∂ x F ( x, U ) = S ( t, x ) � 1 cte per mesh with U n ≈ U ( t n , x ) dx and S ( t, x ) constant per mesh, i ∆ x m i M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 12 / 26

  16. Finite Volume (VF) numerical scheme of order 1 Cell-centered numerical scheme PFS equations under vectorial form : ∂ t U ( t, x ) + ∂ x F ( x, U ) = S ( t, x ) � 1 cte per mesh with U n ≈ U ( t n , x ) dx and S ( t, x ) constant per mesh, i ∆ x m i Cell-centered numerical scheme : i − ∆ t n � � U n +1 = U n + ∆ t n S ( U n F i +1 / 2 ( U i , U i − 1 ) − F i − 1 / 2 ( U i − 1 , U i ) i ) i ∆ x where � t n +1 � ∆ t n S n i ≈ S ( t, x ) dx dt t n m i M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 12 / 26

  17. Finite Volume (VF) numerical scheme of order 1 Upwinded numerical scheme : the principle PFS equations under vectorial form : ∂ t U ( t, x ) + ∂ x F ( x, U ) = S ( t, x ) � 1 cte per mesh with U n ≈ U ( t n , x ) dx and S ( t, x ) constant per mesh, i ∆ x m i Upwinded numerical scheme : � � i − ∆ t n U n +1 = U n F i +1 / 2 ( U i , U i − 1 , S i,i +1 ) − � � F i − 1 / 2 ( U i − 1 , U i , S i − 1 ,i ) i ∆ x M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 12 / 26

  18. Choice of the numerical fluxes Our goal : define F i +1 / 2 in order to preserve continuous properties of the PFS-model Positivity of A , conservativity of A , discrete equilibrium, discrete entropy inequality M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 13 / 26

  19. Choice of the numerical fluxes Our goal : define F i +1 / 2 in order to preserve continuous properties of the PFS-model Positivity of A , conservativity of A , discrete equilibrium, discrete entropy inequality M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 13 / 26

  20. Choice of the numerical fluxes Our goal : define F i +1 / 2 in order to preserve continuous properties of the PFS-model Positivity of A , conservativity of A , discrete equilibrium, discrete entropy inequality M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 13 / 26

  21. Choice of the numerical fluxes Our goal : define F i +1 / 2 in order to preserve continuous properties of the PFS-model Positivity of A , conservativity of A , discrete equilibrium, discrete entropy inequality Our choice VFRoe solver[BEGVF] Kinetic solver[BEG10] C. Bourdarias, M. Ersoy and S. Gerbi. A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme. International Journal On Finite Volumes , Vol 6(2) 1–47, 2009. C. Bourdarias, M. Ersoy and S. Gerbi. A kinetic scheme for transient mixed flows in non uniform closed pipes : a global manner to upwind all the source terms. J. Sci. Comp.,pp 1-16, 10.1007/s10915-010-9456-0, 2011. M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 13 / 26

  22. Outline Outline 1 Unsteady mixed flows : PFS equations (Pressurized and Free Surface) Definitions and examples The PFS model 2 A FVK Framework Kinetic Formulation and numerical scheme Numerical results 3 Conclusion and perspectives M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 14 / 26

  23. Principle Density function We introduce � � ω 2 χ ( ω ) dω = 1 , χ ( ω ) = χ ( − ω ) ≥ 0 , χ ( ω ) dω = 1 , R R M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 15 / 26

  24. Principle Gibbs Equilibrium or Maxwellian We introduce � � ω 2 χ ( ω ) dω = 1 , χ ( ω ) = χ ( − ω ) ≥ 0 , χ ( ω ) dω = 1 , R R then we define the Gibbs equilibrium by � ξ − u ( t, x ) � M ( t, x, ξ ) = A ( t, x ) b ( t, x ) χ b ( t, x ) with � p ( t, x ) b ( t, x ) = A ( t, x ) M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 15 / 26

  25. Principle micro-macroscopic relations Since � � ω 2 χ ( ω ) dω = 1 , χ ( ω ) = χ ( − ω ) ≥ 0 , χ ( ω ) dω = 1 , R R and � ξ − u ( t, x ) � M ( t, x, ξ ) = A ( t, x ) b ( t, x ) χ b ( t, x ) then � A = M ( t, x, ξ ) dξ � R Q = ξ M ( t, x, ξ ) dξ � R Q 2 A + A b 2 ξ 2 M ( t, x, ξ ) dξ = ���� R p M. Ersoy (BCAM) FVK framework for PFS -model Euskadi - Kyushu 2011 15 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend