a factorization method for support characterization of an
play

A factorization method for support characterization of an obstacle - PowerPoint PPT Presentation

A factorization method for support characterization of an obstacle with a generalized impedance boundary condition Mathieu Chamaillard , Nicolas Chaulet and Houssem Haddar POEMS (Propagation dOndes : Etude Mathmatique et Simulation) CNRS /


  1. A factorization method for support characterization of an obstacle with a generalized impedance boundary condition Mathieu Chamaillard , Nicolas Chaulet and Houssem Haddar POEMS (Propagation d’Ondes : Etude Mathématique et Simulation) CNRS / ENSTA / INRIA, Palaiseau October 25, 2013

  2. Outline 1 The GIBC forward problem 2 The inverse GIBC problem 3 Numerical examples

  3. The Generalized Impedance Boundary Conditions in acoustic scattering Context: • Imperfectly conducting obstacles • Periodic coatings (homogenized model) • Thin layers • Thin periodic coatings • ... Inverse problem: recover D from the scattered field.

  4. General notions in inverse scattering Γ ∆ us + k 2 us = 0  D   ∂us � ∂ui �  + Z ui   + Z u = − on Γ  ∂ν ∂ν ∂us 2 � �  � − ikus  � �  lim ds = 0  � �   R →∞ � � | x | = R ∂r � � � 1 eikr u s ( x ) = u ∞ (ˆ x � x ) + O �� r − → + ∞ where ˆ x := | x | . r ( d − 1) / 2 r

  5. General notions in inverse scattering Γ ∆ us + k 2 us = 0  D   ∂us � ∂ui �  + Z ui   + Z u = − on Γ  ∂ν ∂ν ∂us 2 � �  � − ikus  � �  lim ds = 0  � �   R →∞ � � | x | = R ∂r � � � 1 eikr u s ( x ) = u ∞ (ˆ x � x ) + O �� r − → + ∞ where ˆ x := | x | . r ( d − 1) / 2 r θ ) = e ik ˆ θ · z we define For incident plane waves u i ( z, ˆ u ∞ (ˆ x, ˆ θ ) ∈ L 2 ( S d , S d ) ,

  6. General notions in inverse scattering Γ ∆ us + k 2 us = 0  D   ∂us � ∂ui �  + Z ui   + Z u = − on Γ  ∂ν ∂ν ∂us 2 � �  � − ikus  � �  lim ds = 0  � �   R →∞ � � | x | = R ∂r � � � 1 eikr u s ( x ) = u ∞ (ˆ x � x ) + O �� r − → + ∞ where ˆ x := | x | . r ( d − 1) / 2 r θ ) = e ik ˆ θ · z we define For incident plane waves u i ( z, ˆ u ∞ (ˆ x, ˆ θ ) ∈ L 2 ( S d , S d ) , Under minimal assumptions on Z design a method to recover D from u ∞ for all (ˆ x, ˆ θ ) .

  7. The factorization method: a sampling method θ ) = e ik ˆ θ · x define For u i ( x, ˆ → u ∞ (ˆ x, ˆ ( Z , D ) − θ ) where u ∞ associated with u s ( Z , D ) is defined in dimension d by � 1 e ikr � �� u s ( x ) = u ∞ (ˆ x ) + O r − → + ∞ . r ( d − 1) / 2 r L 2 ( S d ) − → L 2 ( S d ) F : � Sd u ∞ (ˆ x, ˆ θ ) g (ˆ θ ) d ˆ g �− → θ Define the self-adjoint positive operator F # := |ℜ e ( F ) | + ℑ m ( F ) θ · z ∈ R ( F 1 / 2 ⇒ e − ik ˆ z ∈ D ⇐ ) #

  8. The factorization method: a sampling method θ ) = e ik ˆ θ · x define For u i ( x, ˆ → u ∞ (ˆ x, ˆ ( Z , D ) − θ ) where u ∞ associated with u s ( Z , D ) is defined in dimension d by � 1 e ikr � �� u s ( x ) = u ∞ (ˆ x ) + O r − → + ∞ . r ( d − 1) / 2 r L 2 ( S d ) − → L 2 ( S d ) F : D � Sd u ∞ (ˆ x, ˆ θ ) g (ˆ θ ) d ˆ g �− → θ z Define the self-adjoint positive operator F # := |ℜ e ( F ) | + ℑ m ( F ) θ · z ∈ R ( F 1 / 2 ⇒ e − ik ˆ z ∈ D ⇐ ) # ∃ g s. t. F 1 / 2 g = e − ik ˆ θ · z #

  9. The factorization method: a sampling method θ ) = e ik ˆ θ · x define For u i ( x, ˆ → u ∞ (ˆ x, ˆ ( Z , D ) − θ ) where u ∞ associated with u s ( Z , D ) is defined in dimension d by � 1 e ikr � �� u s ( x ) = u ∞ (ˆ x ) + O r − → + ∞ . r ( d − 1) / 2 r L 2 ( S d ) − → L 2 ( S d ) F : D � Sd u ∞ (ˆ x, ˆ θ ) g (ˆ θ ) d ˆ g �− → θ Define the self-adjoint positive operator F # := |ℜ e ( F ) | + ℑ m ( F ) z θ · z ∈ R ( F 1 / 2 ⇒ e − ik ˆ z ∈ D ⇐ ) # No solution!

  10. State of the art • Factorization method for impenetrable scatterers: • Dirichlet and Neumann boundary condition: Kirsch 1998, • Impedance boundary condition ( Z = λ ): Kirsch & Grinberg 2002, • Inverse iterative methods with GIBC: Bourgeois, Chaulet & Haddar 2011–2012.

  11. Outline 1 The GIBC forward problem 2 The inverse GIBC problem 3 Numerical examples

  12. The GIBC forward problem A volume formulation • V an Hilbert space such that C ∞ (Γ) ⊂ V ⊂ H 1 / 2 (Γ) → V ∗ is linear and continuous and • Z : V − Z ∗ u = Z u For example for complex functions ( λ, µ ) ∈ ( L ∞ (Γ)) 2 Z = div Γ µ ∇ Γ + λ V = H 1 (Γ)

  13. The GIBC forward problem A volume formulation • V an Hilbert space such that C ∞ (Γ) ⊂ V ⊂ H 1 / 2 (Γ) → V ∗ is linear and continuous and • Z : V − Z ∗ u = Z u • ℑ m � Z u, u � V ∗ ,V ≥ 0 for uniqueness reasons The GIBC problem writes: Find u s ∈ � � v ∈ D ′ (Ω ext ) , ϕv ∈ H 1 (Ω ext ) ∀ ϕ ∈ D ( R d ); v | Γ ∈ V ∆ u s + k 2 u s = 0 in Ω ext ,    ∂u s � f = − ∂u i �   ∂ν + Z u s = f on Γ , ∂ν − Z u i   ( P vol )  �  | ∂ r u s − iku s | 2 = 0 .  lim    R →∞ | x | = R

  14. The GIBC forward problem A volume formulation • V an Hilbert space such that C ∞ (Γ) ⊂ V ⊂ H 1 / 2 (Γ) → V ∗ is linear and continuous and • Z : V − Z ∗ u = Z u • ℑ m � Z u, u � V ∗ ,V ≥ 0 for uniqueness reasons The GIBC problem writes: Find u s ∈ � � v ∈ D ′ (Ω ext ) , ϕv ∈ H 1 (Ω ext ) ∀ ϕ ∈ D ( R d ); v | Γ ∈ V ∆ u s + k 2 u s = 0 in Ω ext ,    ∂u s � f = − ∂u i �   ∂ν + Z u s = f on Γ , ∂ν − Z u i   ( P vol )  �  | ∂ r u s − iku s | 2 = 0 .  lim    R →∞ | x | = R Proof of uniqueness Assume f = 0 then on Γ :

  15. The GIBC forward problem A volume formulation • V an Hilbert space such that C ∞ (Γ) ⊂ V ⊂ H 1 / 2 (Γ) → V ∗ is linear and continuous and • Z : V − Z ∗ u = Z u • ℑ m � Z u, u � V ∗ ,V ≥ 0 for uniqueness reasons The GIBC problem writes: Find u s ∈ � � v ∈ D ′ (Ω ext ) , ϕv ∈ H 1 (Ω ext ) ∀ ϕ ∈ D ( R d ); v | Γ ∈ V ∆ u s + k 2 u s = 0 in Ω ext ,    ∂u s � f = − ∂u i �   ∂ν + Z u s = f on Γ , ∂ν − Z u i   ( P vol )  �  | ∂ r u s − iku s | 2 = 0 .  lim    R →∞ | x | = R Proof of uniqueness Assume f = 0 then on Γ : ∂u s ∂ν + Z u s = 0 ,

  16. The GIBC forward problem A volume formulation • V an Hilbert space such that C ∞ (Γ) ⊂ V ⊂ H 1 / 2 (Γ) → V ∗ is linear and continuous and • Z : V − Z ∗ u = Z u • ℑ m � Z u, u � V ∗ ,V ≥ 0 for uniqueness reasons The GIBC problem writes: Find u s ∈ � � v ∈ D ′ (Ω ext ) , ϕv ∈ H 1 (Ω ext ) ∀ ϕ ∈ D ( R d ); v | Γ ∈ V ∆ u s + k 2 u s = 0 in Ω ext ,    ∂u s � f = − ∂u i �   ∂ν + Z u s = f on Γ , ∂ν − Z u i   ( P vol )  �  | ∂ r u s − iku s | 2 = 0 .  lim    R →∞ | x | = R Proof of uniqueness Assume f = 0 then on Γ : ∂u s ∂ν + Z u s = 0 , ℑ m < ∂u s ∂ν , u s > + ℑ m < Z u s , u s > = 0 .

  17. The GIBC forward problem A volume formulation • V an Hilbert space such that C ∞ (Γ) ⊂ V ⊂ H 1 / 2 (Γ) → V ∗ is linear and continuous and • Z : V − Z ∗ u = Z u • ℑ m � Z u, u � V ∗ ,V ≥ 0 for uniqueness reasons The GIBC problem writes: Find u s ∈ � � v ∈ D ′ (Ω ext ) , ϕv ∈ H 1 (Ω ext ) ∀ ϕ ∈ D ( R d ); v | Γ ∈ V ∆ u s + k 2 u s = 0 in Ω ext ,    ∂u s � f = − ∂u i �   ∂ν + Z u s = f on Γ , ∂ν − Z u i   ( P vol )  �  | ∂ r u s − iku s | 2 = 0 .  lim    R →∞ | x | = R Proof of uniqueness Assume f = 0 then on Γ : ∂u s ∂ν + Z u s = 0 , ℑ m < ∂u s ∂ν , u s > + ℑ m < Z u s , u s > = 0 . Or ℑ m < Z u s , u s > ≥ 0 ⇒ ℑ m < ∂u s ∂ν , u s > ≤ 0 and Rellich lemma ⇒ u s = 0 .

  18. Variational formulation: Reduced problem Find u s ∈ { u s ∈ H 1 ( S R \ D ) , u s ∈ V } such that for all v ∈ { u s ∈ H 1 ( B R \ D ) , u s ∈ V } , a ( u s , v ) = < f, v > where � ∇ u ∇ v − k 2 uv d D + < Zu, v > V ∗ ,V + < Dtn S R u, v > a ( u, v ) := 2 ( S r ) , 1 H B R \ D Dtn S R exterior Dirichlet to Neumann operator on S R The sign of the real part of the impedance operator is imposed by the volume equation!

  19. Well posedness of the forward problem A surface equivalent formulation Find u s ∈ � � v ∈ D ′ (Ω ext ) , ϕv ∈ H 1 (Ω ext ) ∀ ϕ ∈ D ( R d ); v | Γ ∈ V ∆ u s + k 2 u s = 0 in Ω ext ,    ∂u s � f = − ∂u i �   ∂ν + Z u s = f on Γ ,  ∂ν − Z u i  ( P vol )  �  | ∂ r u s − iku s | 2 = 0 .  lim    R →∞ | x | = R • n e : H 1 / 2 (Γ) − → H − 1 / 2 (Γ) the exterior DtN map → ∂u f f �− ∂ν where ∆ u f + k 2 u f = 0 in Ω ext ,     u f = f on Γ , � | ∂ r u f − iku s | 2 = 0 . lim    R →∞ | x | = R

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend