a constrained based optimization approach for seismic
play

A constrained-based optimization approach for seismic data recovery - PowerPoint PPT Presentation

I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION A constrained-based optimization approach for seismic data recovery problems ICASSP 2014 SS5: Seismic signal processing M-Q. PHAM, L. DUVAL* IFP Energies nouvelles 1 et 4 av. de


  1. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION A constrained-based optimization approach for seismic data recovery problems ICASSP 2014 — SS5: Seismic signal processing M-Q. PHAM, L. DUVAL* IFP Energies nouvelles 1 et 4 av. de Bois-Pr´ eau, 92852 Rueil-Malmaison - France C. CHAUX Univ. Aix-Marseille, I2M UMR CNRS 7373 39 rue F. Joliot-Curie, 13453 Marseille - France J-C. PESQUET Univ. Paris-Est, LIGM UMR CNRS 8049 5 bd Descartes, 77454 Marne-la-Vall´ ee - France 4-9 May 2014 1 / 17

  2. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION The fast way ◮ Here: signal = primary; disturbance = multiples ◮ Use of approximate disturbance models (given) ◮ similar to acoustic echo cancellation, speech dereverberation, pattern matching. . . ◮ imperfect models: adaptation (and regularization) required ◮ Two aims: ◮ to recover highly under-determined signals ◮ to alleviate and fasten hyper-parameter determination ◮ An entwined approach: ◮ pragmatic: with geophysically-sound functions/models ◮ heuristic: explore other suitable penalties/constraints ◮ Focus on the “sparsity” term (signal wavelet coefficients) 2 / 17

  3. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Outline I NTRODUCTION C ONTEXT Seismic data Problem formulation G ENERAL SCHEME MAP estimation Hyperplane constraints R ESULTS Synthetic data Real data C ONCLUSION 3 / 17

  4. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Seismic data propagation & acquisition Hydrophone Towed streamer • • • • • • • Primaries + multiple reflection disturbances 4 / 17

  5. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Multiple problem formulation z ( n ) s ( n ) y ( n ) + b ( n ) ¯ + ¯ = ���� ���� ���� ���� observed signal multiple noise primary where ◮ n : time index (somehow related to underground depth) ◮ z = ( z ( n ) ) 0 ≤ n < N : observed data, combining: 1. primary ¯ y = (¯ y ( n ) ) 0 ≤ n < N (signal of interest, unknown) 2. multiples (¯ s ( n ) ) 0 ≤ n < N (sum of undesired bouncing signals) ◮ b = ( b ( n ) ) 0 ≤ n < N : additive noise realization. 5 / 17

  6. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Availability of different approximate models ◮ Several ( J ) models (or templates) r ( n ) are given j ◮ Imperfect in time, amplitude and frequency s ( n ) and corrected ◮ Assumption: models linked to ¯ throughout time-varying (FIR) adaptive filters p ′ + P j − 1 J − 1 � � s ( n ) = h ( n ) ( p ) r ( n − p ) ¯ ¯ j j p = p ′ j = 0 where h ( n ) ◮ ¯ : unknown impulse response of the filter j corresponding to model j and time n ( P j tap coefficients) 6 / 17

  7. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Model examples s ( n ) ¯ r ( n ) 1 r ( n ) 2 100 200 300 400 500 600 700 800 900 1000 Simulated Multiple, 1st model, 2nd model 7 / 17

  8. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Model examples Receiver number Receiver number a) b) 1500 1600 1700 1800 1900 1500 1600 1700 1800 1900 1.5 1.5 2 2 2.5 2.5 3 3 Time (s) 3.5 3.5 4 4 4.5 4.5 5 5 5.5 5.5 Real data Model 7 / 17

  9. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Multiple problem reformulation ¯ ¯ z = R h + y + b ���� ���� ���� ���� observed signal filter noise primary where s = � J − 1 � ¯ s ( N − 1 ) � ⊤ j = 0 R j ¯ h j = R ¯ ◮ ¯ s ( 0 ) h = · · · ¯ � � ⊤ � � and ¯ ¯ 0 · · · ¯ h ⊤ h ⊤ ◮ R = R 0 · · · R J − 1 h = J − 1 � ◮ ¯ h ( 0 ) ¯ ( p ′ ) · · · ¯ h ( 0 ) ( p ′ + P j − 1 ) · · · h j = j j � ⊤ · · · ¯ h ( N − 1 ) ( p ′ ) · · · ¯ h ( N − 1 ) ( p ′ + P j − 1 ) j j ◮ R j is a block diagonal matrix. 8 / 17

  10. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Maximum-a-Posteriori (MAP) estimation ◮ Assumption : ¯ y is a realization of a random vector Y , whose probability density is given by: ( ∀ y ∈ R N ) f Y ( y ) ∝ exp ( − ϕ ( y )) ◮ Assumption : ¯ h is a realization of a random vector H , whose probability density can be expressed as: ( ∀ h ∈ R NP ) f H ( h ) ∝ exp ( − ρ ( h )) ◮ Assumption : b is a realization of a random vector B , of probability density: ( ∀ b ∈ R N ) f B ( b ) ∝ exp ( − ψ ( b )) B is assumed to be independent from Y and H 9 / 17

  11. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Maximum-a-Posteriori (MAP) estimation MAP estimation of ( y , h ) � � minimize ψ z − Rh − y + ϕ ( y ) + ρ ( h ) . y ∈ R N , h ∈ R NP ���� � �� � ���� a priori on the signal a priori on the filters fidelity: linked to noise 9 / 17

  12. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Constraints Assumption : Gaussian noise, B ∼ N ( 0 , σ 2 ) � w ∈ R N | � w � 2 ≤ N σ 2 � ψ = ι S where S = Assumption : slow variations of adaptive FIR filters along time � � | h ( n + 1 ) ( p ) − h ( n ) ∀ ( j , n , p ) ( p ) | ≤ ε j , p ( hyperslab C ) j j Assumption : limits on (functions of) primary coefficients Fy ∈ D , where F ∈ R K × N : analysis frame operator 10 / 17

  13. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Constraints Assumption : Gaussian noise, B ∼ N ( 0 , σ 2 ) � w ∈ R N | � w � 2 ≤ N σ 2 � ψ = ι S where S = Assumption : slow variations of adaptive FIR filters along time � � | h ( n + 1 ) ( p ) − h ( n ) ∀ ( j , n , p ) ( p ) | ≤ ε j , p ( hyperslab C ) j j Assumption : limits on (functions of) primary coefficients Fy ∈ D , where F ∈ R K × N : analysis frame operator MAP estimation of ( y , h ) � � y ∈ R N , h ∈ R NP ϕ ( y ) + ρ ( h ) + ι S z − Rh − y + ι C ( h ) + ι D ( Fy ) . minimize 10 / 17

  14. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Hard constraints on primaries y : convex set D F : analysis frame operator, with L subbands ( x k = ( Fy ) k ) D = D 1 × · · · × D L ∀ ℓ ∈ { 1 , . . . , L} 1. D ℓ = { ( x k ) k ∈ K ℓ | � k ∈ K ℓ φ ℓ ( x k ) ≤ β ℓ } , where, β ℓ ∈ ] 0 , + ∞ [ , φ ℓ : R card ( K ℓ ) → [ 0 , + ∞ [ is a proper lsc convex function. 2. D ℓ = { ( x k ) k ∈ K ℓ | � k ∈ K ℓ φ ℓ (( Lz ) k ) x k = β ℓ } , where φ ℓ : R → R , L ∈ R N × N : linear operator, e.g. a Wiener-like filter � ( 1 + λ 1 + λ 2 � R ( 0 ) � 2 ) − 1 , . . . , L = λ 1 Diag ( 1 + λ 1 + λ 2 � R ( N − 1 ) � 2 ) − 1 � ( λ 1 , λ 2 ) ∈ ] 0 , + ∞ [ 2 , R ( n ) : n -th row of matrix R . 11 / 17

  15. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Qualitative results 1.5 1 0.5 0 −0.5 −1 −1.5 0 100 200 300 400 500 600 700 Observed signal z (red; σ = 0 . 01), original y (blue). D is the intersection of two hyperplanes defined from the identity (Id) and the sign functions. 12 / 17

  16. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Qualitative results 1.5 1 0.5 0 −0.5 −1 −1.5 0 100 200 300 400 500 600 700 Estimated signal ˆ y (magenta), original signal y (blue). D is the intersection of two hyperplanes defined from the identity (Id) and the sign functions. 12 / 17

  17. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Qualitative results 0.5 0.4 0.3 0.2 0.1 0 −0.1 −0.2 −0.3 −0.4 −0.5 0 100 200 300 400 500 600 700 Estimated multiples ˆ s (magenta), original multiples s (blue). D is the intersection of two hyperplanes defined from the identity (Id) and the sign functions. 12 / 17

  18. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Quantitative results σ 0 . 01 0 . 04 φ α SNR y SNR s α SNR y SNR s 0 0.4 23.98 15.79 0.9 15.03 9.60 ℓ ∞ 0.6 24.48 15.81 0.8 16.24 8.69 ℓ 2 0.6 25.59 16.02 0.8 17.84 9.20 ℓ 1 0.4 25.98 16.16 0.9 18.19 6.61 sign 0.3 24.43 14.73 0.1 14.75 4.58 Id 0.4 26.19 15.81 0.2 19.74 8.84 Id + sign 0.3 26.40 15.56 0.1 18.43 5.94 Upper table part: “classical constraints” and lower table part: hyperplane contraints. ( ϕ = ( 1 − α ) ℓ 1 , ρ = αℓ 2 ) 13 / 17

  19. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Real data Portion of a common receiver gather: (left) recorded seismic data with a partially appearing primary (right) multiple wavefield template. 14 / 17

  20. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Real data Subtraction results, low field-noise case: primaries (separated from multiples) with (left) [Ventosa et al. 2012] (right) with the proposed method. 14 / 17

  21. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Real data Subtraction results, high field-noise case: primaries (separated from multiples) with (left) [Ventosa et al. 2012] (right) with the proposed method. 14 / 17

  22. I NTRODUCTION C ONTEXT G ENERAL SCHEME R ESULTS C ONCLUSION Conclusion: in symbols minimize ( 1 − α ) ϕ ( y ) + αρ ( h ) y ∈ R N , h ∈ R Q  ψ ( z − y − Rh ) ≤ 1   subject to h ∈ C   Fy ∈ D with easier bounds inferred from data & coarser processing 15 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend