a conjecture regarding optimality of the dictator
play

A conjecture regarding optimality of the dictator function under - PowerPoint PPT Presentation

A conjecture regarding optimality of the dictator function under Hellinger distance Chandra Nair The Chinese University of Hong Kong 2017 ITA Workshop, UCSD February 13, 2017 Collaborators (co-authors) Andrej Bogdanov Venkat Anantharam CUHK


  1. A conjecture regarding optimality of the dictator function under Hellinger distance Chandra Nair The Chinese University of Hong Kong 2017 ITA Workshop, UCSD February 13, 2017

  2. Collaborators (co-authors) Andrej Bogdanov Venkat Anantharam CUHK U.C. Berkeley Thathachar Jayram Amit Chakrabarti IBM Alamaden Dartmouth Thanks: Simon’s institute

  3. Introduction Introduction Starting point : the following conjecture 1 by Kumar (’12) X : uniform on {− 1 , +1 } n Y : obtained from X via the standard noise-operator , i.e. flip each bit (independently) with probability 1 − ρ 2 . Conjecture-MI The dictator function f d ( X ) = X 1 maximizes the mutual information I ( f ( X ); Y ) among all boolean functions f ( X ) . 1 Thomas A Courtade and Gowtham R Kumar. “Which Boolean functions maximize mutual information on noisy inputs?” In: IEEE Transactions on Information Theory 60.8 (2014), pp. 4515–4525. chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 3 / 15

  4. Introduction Introduction Starting point : the following conjecture 1 by Kumar (’12) X : uniform on {− 1 , +1 } n Y : obtained from X via the standard noise-operator , i.e. flip each bit (independently) with probability 1 − ρ 2 . Conjecture-MI The dictator function f d ( X ) = X 1 maximizes the mutual information I ( f ( X ); Y ) among all boolean functions f ( X ) . Alternate view Let Φ JS ( x ) := 1 − H b ( x ) = JS [( x, 1 − x ) , (1 − x, x )] . Given f ( X ) : {− 1 , +1 } n �→ {− 1 , +1 } , let Z f ( Y ) := 1 − ( T ρ f )( Y ) where 2 ( T ρ f )( Y ) = E( f ( X ) | Y ) . Conjecture-MI (restatement) The dictator function f d ( X ) = X 1 maximizes the Φ JS -entropy, E(Φ JS ( Z f ( Y ))) − Φ JS (E( Z f ( Y ))) , among all boolean functions f ( X ) . 1 Courtade and Kumar, “Which Boolean functions maximize mutual information on noisy inputs?” chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 3 / 15

  5. Introduction Main Conjecture Idea : Replace Φ JS ( x ) by other convex functions. Consider squared Hellinger distance between ( x, 1 − x ) and (1 − x, x ) � Φ H 2 ( x ) := 1 − 2 x (1 − x ) . As before, given f ( X ) : {− 1 , +1 } n �→ {− 1 , +1 } , let Z f ( Y ) := 1 − ( T ρ f )( Y ) . 2 Conjecture-SH The dictator function f d ( X ) = X 1 maximizes the Φ H 2 -entropy, E(Φ H 2 ( Z f ( Y ))) − Φ H 2 (E( Z f ( Y ))) , among all boolean functions f ( X ) . Equivalently �� � 1 − E( f ) 2 − E � � 1 − ( T ρ f ) 2 ( Y ) 1 − ρ 2 . ≤ 1 − chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 4 / 15

  6. Introduction Main Conjecture Idea : Replace Φ JS ( x ) by other convex functions. Consider squared Hellinger distance between ( x, 1 − x ) and (1 − x, x ) � Φ H 2 ( x ) := 1 − 2 x (1 − x ) . As before, given f ( X ) : {− 1 , +1 } n �→ {− 1 , +1 } , let Z f ( Y ) := 1 − ( T ρ f )( Y ) . 2 Conjecture-SH The dictator function f d ( X ) = X 1 maximizes the Φ H 2 -entropy, E(Φ H 2 ( Z f ( Y ))) − Φ H 2 (E( Z f ( Y ))) , among all boolean functions f ( X ) . Equivalently �� � 1 − E( f ) 2 − E � � 1 − ( T ρ f ) 2 ( Y ) 1 − ρ 2 . ≤ 1 − 1 Why is this interesting? (or, why should one care about this Φ ?) 2 Evidence to the veracity of the conjecture 3 Weaker forms chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 4 / 15

  7. Introduction About the Hellinger conjecture In short, two lemmas: 1 Conjecture-SH implies Conjecture-MI 2 Conjecture-SH is extremal chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 5 / 15

  8. Introduction About the Hellinger conjecture In short, two lemmas: 1 Conjecture-SH implies Conjecture-MI 2 Conjecture-SH is extremal Proposition Conjecture-SH implies Conjecture-MI Lemma √ � � 1 − 1 − x 2 The function H b is non-negative, increasing, and convex in x for x ∈ [0 , 1] . 2 √ Let Ψ( x ) = 1 − 1 − x 2 . Observe that 2 � 1 − x � � �� �� 1 − x 2 H = H Ψ . 2 Conjecture-MI can be expressed as � � �� ��� � �� �� � �� �� Ψ 1 − E( f ) 2 − E Ψ 1 − ( T ρ f ) 2 ( Y ) ≤ H (Ψ(1)) − H Ψ 1 − ρ 2 H H . chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 5 / 15

  9. Introduction Idea of proof By the convexity of H (Ψ( x )) (lemma) suffices to show � � �� ��� � �� �� � �� �� H Ψ 1 − E( f ) 2 − H Ψ E 1 − ( T ρ f ) 2 ( Y ) ≤ H (Ψ(1)) − H Ψ 1 − ρ 2 . However Conjecture-SH implies �� � 1 − E( f ) 2 − E � � 1 − ( T ρ f ) 2 ( Y ) ≤ 1 − 1 − ρ 2 . Apply weak-majorization inequality: in particular use convexity, non-negativeness, and increasing property of H (Ψ( x )) . chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 6 / 15

  10. Introduction Extremality of Hellinger Conjecture Conjecture-SH states �� � 1 − E( f ) 2 − E � � 1 − ( T ρ f ) 2 ( Y ) ≤ 1 − 1 − ρ 2 . Take lim ρ → 1 (clean channel). If Conjecture-SH is true then (for balanced Boolean functions) �� � E Sen f ( X ) ≥ 1 . Sen f ( x ) : sensitivity at x , number of neighbors with opposite value of f ( x ) . chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 7 / 15

  11. Introduction Extremality of Hellinger Conjecture Conjecture-SH states �� � � 1 − E( f ) 2 − E � 1 − ( T ρ f ) 2 ( Y ) ≤ 1 − 1 − ρ 2 . Take lim ρ → 1 (clean channel). If Conjecture-SH is true then (for balanced Boolean functions) �� � E Sen f ( X ) ≥ 1 . Sen f ( x ) : sensitivity at x , number of neighbors with opposite value of f ( x ) . Similar limit for Conjecture-MI would be equivalent to (for balanced Boolean functions) E ( Sen f ( X )) ≥ 1 . This is known to be true (Poincare’s inequality, Pareseval’s theorem, Harper’s isoperimetric inequality) chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 7 / 15

  12. Introduction Extremality of Hellinger Conjecture Conjecture-SH states �� � 1 − E( f ) 2 − E � � 1 − ( T ρ f ) 2 ( Y ) ≤ 1 − 1 − ρ 2 . Take lim ρ → 1 (clean channel). If Conjecture-SH is true then (for balanced Boolean functions) �� � E Sen f ( X ) ≥ 1 . Sen f ( x ) : sensitivity at x , number of neighbors with opposite value of f ( x ) . On the other hand, best lower bound for balanced functions � �� � 2 E Sen f ( X ) ≥ (Bobkov ’98) . π Therefore even in this limit, the conjecture would imply something new. chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 7 / 15

  13. Introduction Extremality of Hellinger Conjecture Conjecture-SH states �� � 1 − E( f ) 2 − E � � 1 − ( T ρ f ) 2 ( Y ) ≤ 1 − 1 − ρ 2 . Take lim ρ → 1 (clean channel). If Conjecture-SH is true then (for balanced Boolean functions) �� � E Sen f ( X ) ≥ 1 . Sen f ( x ) : sensitivity at x , number of neighbors with opposite value of f ( x ) . Lemma For any α < 1 2 , let maj ( Y ) denote the majority function (assume that n is odd). Then there exists large enough n such that Sen α < E ( Sen α � � E maj ( Y ) dic ( Y )) = 1 . chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 7 / 15

  14. Introduction Evidence to the veracity of Conjecture-SH �� � 1 − E( f ) 2 − E � � 1 − ( T ρ f ) 2 ( Y ) ≤ 1 − 1 − ρ 2 . 1 verified numerically until n = 8 2 Conjecture-SH is true if 1 − ρ 2 + 1 − E( f ) 2 ≤ 1 � � chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 8 / 15

  15. Introduction Evidence to the veracity of Conjecture-SH �� � 1 − E( f ) 2 − E � � 1 − ( T ρ f ) 2 ( Y ) ≤ 1 − 1 − ρ 2 . 1 verified numerically until n = 8 2 Conjecture-SH is true if 1 − ρ 2 + 1 − E( f ) 2 ≤ 1 + (1 − ρ 2 )(1 − E( f ) 2 ) � � On numerical verification Issue: Number of Boolean functions is 2 2 n Lemma : For any convex Φ , there is a doubly monotone boolean function that maximizes the Φ -entropy, E(Φ( Z f )) − Φ(E( Z f )) , where maximization is over all boolean functions. While the number of doubly monotone boolean functions also grows doubly exponentially, still amenable till n = 8 (or a bit more). chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 8 / 15

  16. Introduction On lemma Doubly-monotone : A boolean function is said to be doubly-monotone if it is monotone, and for any 1 ≤ i < j ≤ n , f ( S ∪ { i, j } ) ≥ f ( S ∪ { i } ) ≥ f ( S ∪ { j } ) ≥ f ( S ) , ∀ S ⊆ [1 : n ] . Proof: Follows from majorization and Karamata’s inequality. Similar argument also present in (Courtade-Kumar ’14) chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 9 / 15

  17. Introduction 2nd evidence: Proof in the parameter regime �� � 1 − (1 − λ ) E( f ) 2 − E 1 − λρ 2 − (1 − λ ) g 2 ( y ) � G ( λ ) := , where g ( y ) = ( T ρ f )( y ) . Want to show G (1) ≥ G (0) . � � E( f ) 2 g 2 ( y ) − ρ 2 G ′ ( λ ) = 1 − (1 − λ ) E( f ) 2 − E 1 − λρ 2 − (1 − λ ) g 2 ( y ) � � 2 2 chandra@ie.cuhk.edu.hk Z-interference 13-Feb-2017 10 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend