the erd os moser conjecture
play

The Erd os-Moser Conjecture Pieter Moree (MPIM, Bonn) Amsterdam, - PowerPoint PPT Presentation

The Erd os-Moser Conjecture Pieter Moree (MPIM, Bonn) Amsterdam, CWI December 2, 2011 Workshop Herman te Riele The Conj(ect)urers Leo Moser (1921-1970) Pal Erd os (1913-1996) Lower bounds for solutions Put S k ( m ) := 1 k + 2 k +


  1. The Erd˝ os-Moser Conjecture Pieter Moree (MPIM, Bonn) Amsterdam, CWI December 2, 2011 Workshop Herman te Riele

  2. The Conj(ect)urers Leo Moser (1921-1970) Pal Erd˝ os (1913-1996)

  3. Lower bounds for solutions Put S k ( m ) := 1 k + 2 k + · · · + ( m − 1 ) k .

  4. Lower bounds for solutions Put S k ( m ) := 1 k + 2 k + · · · + ( m − 1 ) k . Erd˝ os-Moser Conjecture . If S k ( m ) = m k , then ( k , m ) = ( 1 , 3 ) .

  5. Lower bounds for solutions Put S k ( m ) := 1 k + 2 k + · · · + ( m − 1 ) k . Erd˝ os-Moser Conjecture . If S k ( m ) = m k , then ( k , m ) = ( 1 , 3 ) . Theorem If S k ( m ) = m k with k > 1 , then (a) m > 10 10 6 (Leo Moser, 1953).

  6. Lower bounds for solutions Put S k ( m ) := 1 k + 2 k + · · · + ( m − 1 ) k . Erd˝ os-Moser Conjecture . If S k ( m ) = m k , then ( k , m ) = ( 1 , 3 ) . Theorem If S k ( m ) = m k with k > 1 , then (a) m > 10 10 6 (Leo Moser, 1953). (b) m > 10 9 · 10 6 (Butske, Jaje, Mayernik, 2000).

  7. Lower bounds for solutions Put S k ( m ) := 1 k + 2 k + · · · + ( m − 1 ) k . Erd˝ os-Moser Conjecture . If S k ( m ) = m k , then ( k , m ) = ( 1 , 3 ) . Theorem If S k ( m ) = m k with k > 1 , then (a) m > 10 10 6 (Leo Moser, 1953). (b) m > 10 9 · 10 6 (Butske, Jaje, Mayernik, 2000). (c) m > 10 10 9 (Gallot, Moree, Zudilin, 2011).

  8. Lower bounds for solutions Put S k ( m ) := 1 k + 2 k + · · · + ( m − 1 ) k . Erd˝ os-Moser Conjecture . If S k ( m ) = m k , then ( k , m ) = ( 1 , 3 ) . Theorem If S k ( m ) = m k with k > 1 , then (a) m > 10 10 6 (Leo Moser, 1953). (b) m > 10 9 · 10 6 (Butske, Jaje, Mayernik, 2000). (c) m > 10 10 9 (Gallot, Moree, Zudilin, 2011). Butske et al. wrote:....the authors hope that new insights will eventually make it possible to reach the more natural benchmark 10 10 7 ....

  9. Lower bounds for solutions Put S k ( m ) := 1 k + 2 k + · · · + ( m − 1 ) k . Erd˝ os-Moser Conjecture . If S k ( m ) = m k , then ( k , m ) = ( 1 , 3 ) . Theorem If S k ( m ) = m k with k > 1 , then (a) m > 10 10 6 (Leo Moser, 1953). (b) m > 10 9 · 10 6 (Butske, Jaje, Mayernik, 2000). (c) m > 10 10 9 (Gallot, Moree, Zudilin, 2011). Butske et al. wrote:....the authors hope that new insights will eventually make it possible to reach the more natural benchmark 10 10 7 .... Theorem (c) relies heavily on earlier work involving

  10. Lower bounds for solutions Put S k ( m ) := 1 k + 2 k + · · · + ( m − 1 ) k . Erd˝ os-Moser Conjecture . If S k ( m ) = m k , then ( k , m ) = ( 1 , 3 ) . Theorem If S k ( m ) = m k with k > 1 , then (a) m > 10 10 6 (Leo Moser, 1953). (b) m > 10 9 · 10 6 (Butske, Jaje, Mayernik, 2000). (c) m > 10 10 9 (Gallot, Moree, Zudilin, 2011). Butske et al. wrote:....the authors hope that new insights will eventually make it possible to reach the more natural benchmark 10 10 7 .... Theorem (c) relies heavily on earlier work involving Herman te Riele...

  11. ◮ M.R. Best and H.J.J. te Riele, On a conjecture of Erd˝ os concerning sums of powers of integers, Report NW 23/76, Mathematisch Centrum, Amsterdam, 1976.

  12. ◮ M.R. Best and H.J.J. te Riele, On a conjecture of Erd˝ os concerning sums of powers of integers, Report NW 23/76, Mathematisch Centrum, Amsterdam, 1976.

  13. ◮ M.R. Best and H.J.J. te Riele, On a conjecture of Erd˝ os concerning sums of powers of integers, Report NW 23/76, Mathematisch Centrum, Amsterdam, 1976. ◮ M., H.J.J. te Riele, J. Urbanowicz, Divisibility properties of integers x , k satisfying 1 k + · · · + ( x − 1 ) k = x k , Math. Comp. 63 (1994), 799-815.

  14. ◮ M.R. Best and H.J.J. te Riele, On a conjecture of Erd˝ os concerning sums of powers of integers, Report NW 23/76, Mathematisch Centrum, Amsterdam, 1976. ◮ M., H.J.J. te Riele, J. Urbanowicz, Divisibility properties of integers x , k satisfying 1 k + · · · + ( x − 1 ) k = x k , Math. Comp. 63 (1994), 799-815.

  15. ◮ M.R. Best and H.J.J. te Riele, On a conjecture of Erd˝ os concerning sums of powers of integers, Report NW 23/76, Mathematisch Centrum, Amsterdam, 1976. ◮ M., H.J.J. te Riele, J. Urbanowicz, Divisibility properties of integers x , k satisfying 1 k + · · · + ( x − 1 ) k = x k , Math. Comp. 63 (1994), 799-815. Herman’s coauthors (around 1991....)

  16. Power sums modulo primes Proposition . Let p be a prime. Modulo p we have � − 1 if p-1|k ; S k ( p ) ≡ 1 k + 2 k + . . . + ( p − 1 ) k = 0 otherwise . Proof . The map x �→ gx ( mod p ) induces a permutation on { 1 , . . . , p − 1 } .

  17. Power sums modulo primes Proposition . Let p be a prime. Modulo p we have � − 1 if p-1|k ; S k ( p ) ≡ 1 k + 2 k + . . . + ( p − 1 ) k = 0 otherwise . Proof . The map x �→ gx ( mod p ) induces a permutation on { 1 , . . . , p − 1 } . Thus S k ( p ) ≡ g k S k ( p )( mod p ) .

  18. Power sums modulo primes Proposition . Let p be a prime. Modulo p we have � − 1 if p-1|k ; S k ( p ) ≡ 1 k + 2 k + . . . + ( p − 1 ) k = 0 otherwise . Proof . The map x �→ gx ( mod p ) induces a permutation on { 1 , . . . , p − 1 } . Thus S k ( p ) ≡ g k S k ( p )( mod p ) . If p − 1 ∤ k , there exists g such that g k �≡ 1 ( mod p ) .

  19. Power sums modulo primes Proposition . Let p be a prime. Modulo p we have � − 1 if p-1|k ; S k ( p ) ≡ 1 k + 2 k + . . . + ( p − 1 ) k = 0 otherwise . Proof . The map x �→ gx ( mod p ) induces a permutation on { 1 , . . . , p − 1 } . Thus S k ( p ) ≡ g k S k ( p )( mod p ) . If p − 1 ∤ k , there exists g such that g k �≡ 1 ( mod p ) . Hence S k ( p ) ≡ 0 ( mod p ) .

  20. Power sums modulo primes Proposition . Let p be a prime. Modulo p we have � − 1 if p-1|k ; S k ( p ) ≡ 1 k + 2 k + . . . + ( p − 1 ) k = 0 otherwise . Proof . The map x �→ gx ( mod p ) induces a permutation on { 1 , . . . , p − 1 } . Thus S k ( p ) ≡ g k S k ( p )( mod p ) . If p − 1 ∤ k , there exists g such that g k �≡ 1 ( mod p ) . Hence S k ( p ) ≡ 0 ( mod p ) . Otherwise, invoke Fermat’s little theorem.

  21. Start of Moser’s proof First take k = 1. 1 + 2 + . . . + ( m − 1 ) = m ⇒ m ( m − 1 ) / 2 = m ⇒ m = 3

  22. Start of Moser’s proof First take k = 1. 1 + 2 + . . . + ( m − 1 ) = m ⇒ m ( m − 1 ) / 2 = m ⇒ m = 3 If k > 1 is odd, then wm ( m − 1 ) / 2 = m k ⇒ m = 3.

  23. Start of Moser’s proof First take k = 1. 1 + 2 + . . . + ( m − 1 ) = m ⇒ m ( m − 1 ) / 2 = m ⇒ m = 3 If k > 1 is odd, then wm ( m − 1 ) / 2 = m k ⇒ m = 3. Impossible, since 1 + 2 k = 3 k ⇒ k = 1.

  24. Start of Moser’s proof First take k = 1. 1 + 2 + . . . + ( m − 1 ) = m ⇒ m ( m − 1 ) / 2 = m ⇒ m = 3 If k > 1 is odd, then wm ( m − 1 ) / 2 = m k ⇒ m = 3. Impossible, since 1 + 2 k = 3 k ⇒ k = 1. Assume 2 | k from now on.

  25. Start of Moser’s proof First take k = 1. 1 + 2 + . . . + ( m − 1 ) = m ⇒ m ( m − 1 ) / 2 = m ⇒ m = 3 If k > 1 is odd, then wm ( m − 1 ) / 2 = m k ⇒ m = 3. Impossible, since 1 + 2 k = 3 k ⇒ k = 1. Assume 2 | k from now on. Idea: consider p so that m k takes a simple form modulo p .

  26. Start of Moser’s proof First take k = 1. 1 + 2 + . . . + ( m − 1 ) = m ⇒ m ( m − 1 ) / 2 = m ⇒ m = 3 If k > 1 is odd, then wm ( m − 1 ) / 2 = m k ⇒ m = 3. Impossible, since 1 + 2 k = 3 k ⇒ k = 1. Assume 2 | k from now on. Idea: consider p so that m k takes a simple form modulo p . Suppose that p | m − 1. We have S k ( m ) ≡ m − 1 ( 1 k + 2 k + . . . + ( p − 1 ) k ) ≡ 1 ( mod p ) . p

  27. Start of Moser’s proof First take k = 1. 1 + 2 + . . . + ( m − 1 ) = m ⇒ m ( m − 1 ) / 2 = m ⇒ m = 3 If k > 1 is odd, then wm ( m − 1 ) / 2 = m k ⇒ m = 3. Impossible, since 1 + 2 k = 3 k ⇒ k = 1. Assume 2 | k from now on. Idea: consider p so that m k takes a simple form modulo p . Suppose that p | m − 1. We have S k ( m ) ≡ m − 1 ( 1 k + 2 k + . . . + ( p − 1 ) k ) ≡ 1 ( mod p ) . p By the proposition we infer that m − 1 + 1 ≡ 0 ( mod p ) . p

  28. Start of Moser’s proof First take k = 1. 1 + 2 + . . . + ( m − 1 ) = m ⇒ m ( m − 1 ) / 2 = m ⇒ m = 3 If k > 1 is odd, then wm ( m − 1 ) / 2 = m k ⇒ m = 3. Impossible, since 1 + 2 k = 3 k ⇒ k = 1. Assume 2 | k from now on. Idea: consider p so that m k takes a simple form modulo p . Suppose that p | m − 1. We have S k ( m ) ≡ m − 1 ( 1 k + 2 k + . . . + ( p − 1 ) k ) ≡ 1 ( mod p ) . p By the proposition we infer that m − 1 + 1 ≡ 0 ( mod p ) . p

  29. Start of Moser’s proof, II � m − 1 � � + 1 ≡ 0 ( mod m − 1 ) . p p | m − 1

  30. Start of Moser’s proof, II � m − 1 � � + 1 ≡ 0 ( mod m − 1 ) . p p | m − 1 ( m − 1 ) 2 m − 1 � � � = 1 + + + . . . p p 1 p 2 p | m − 1 p 1 , p 2 | m − 1

  31. Start of Moser’s proof, II � m − 1 � � + 1 ≡ 0 ( mod m − 1 ) . p p | m − 1 ( m − 1 ) 2 m − 1 � � � = 1 + + + . . . p p 1 p 2 p | m − 1 p 1 , p 2 | m − 1 m − 1 � + 1 ≡ 0 ( mod m − 1 ) . p p | m − 1

  32. Start of Moser’s proof, II � m − 1 � � + 1 ≡ 0 ( mod m − 1 ) . p p | m − 1 ( m − 1 ) 2 m − 1 � � � = 1 + + + . . . p p 1 p 2 p | m − 1 p 1 , p 2 | m − 1 m − 1 � + 1 ≡ 0 ( mod m − 1 ) . p p | m − 1 We arrive at 1 1 � p + m − 1 ∈ Z ≥ 1 . p | m − 1

  33. ....This is Moser’s first mathemagical

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend