a comparison of rao s score test and likelihood ratio
play

A comparison of Raos score test and likelihood ratio tests for three - PowerPoint PPT Presentation

A comparison of Raos score test and likelihood ratio tests for three separable covariance matrix structures Katarzyna Filipiak 1 , Daniel Klein 2 , Anuradha Roy 3 1 Institute of Mathematics, Pozna n University of Technology, Poland 2


  1. A comparison of Rao’s score test and likelihood ratio tests for three separable covariance matrix structures Katarzyna Filipiak 1 , Daniel Klein 2 , Anuradha Roy 3 1 Institute of Mathematics, Pozna´ n University of Technology, Poland 2 Institute of Mathematics, P. J. ˇ Saf´ arik University, Koˇ sice, Slovakia 3 Department of Management Science and Statistics, University of Texas at San Antonio, USA XLII Conference on Mathematical Statistics K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 1 / 20

  2. Data q – number of characteristics p – number of time points n – number of individuals X i , i = 1 ,..., n – i.i.d. observation matrices K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 2 / 20

  3. Observation matrices   x 1 , 1 , 1 x 1 , 1 , 2 ... x 1 , 1 , p   x 1 , 2 , 1 x 1 , 2 , 2 ... x 1 , 2 , p   X 1 = . . .  . . .  . . ... . x 1 , q , 1 x 1 , q , 2 ... x 1 , q , p . . .   x n , 1 , 1 x n , 1 , 2 ... x n , 1 , p   x n , 2 , 1 x n , 2 , 2 ... x n , 2 , p   X n = . . .  . . .  . . ... . x n , q , 1 x n , q , 2 ... x n , q , p K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 3 / 20

  4. Two-level multivariate model Model X i ∼ N q , p ( M , Ω ) X i - matrix of observations M - matrix of means Ω - variance-covariance matrix (p.d.) K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 4 / 20

  5. Two-level multivariate model Model vec X i ∼ N pq ( vec M , Ω ) vec X i ∼ N pq ( µ , Ω ) Vector of unknown parameters: � � � � θ 1 µ pq θ = = θ 2 pq ( pq + 1 ) / 2 vech Ω Estimability of Ω : n > pq K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 5 / 20

  6. Covariance structure pq × pq = Ψ p × p ⊗ Σ Ω q × q Ψ – variance-covariance matrix of the repeated measurements on a given characteristic (the same for all characteristics) Σ – variance-covariance matrix of the q response variables at any given time point (the same for all time points) p ( p + 1 ) + q ( q + 1 ) Number of parameters: − 1 2 2 Roy & Khattree (2003), Lu & Zimmerman (2005), Roy (2007) K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 6 / 20

  7. Covariance structure pq × pq = Ψ p × p ⊗ Σ Ω q × q Ψ – AR(1) structure   ρ p − 1 ρ 2 ρ ... 1   ρ p − 2 ρ ρ ... 1     ρ p − 3 ρ 2 ρ ... Ψ = 1     . . . . ... . . . .  . . . .  ρ p − 1 ρ p − 2 ρ p − 3 ... 1 1 + q ( q + 1 ) Number of parameters: 2 Roy and Khatree, 2005, Roy and Leiva, 2008 K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 7 / 20

  8. Covariance structure pq × pq = Ψ p × p ⊗ Σ Ω q × q Ψ – CS structure   1 ρ ρ ... ρ   ρ 1 ρ ... ρ     ρ ρ 1 ... ρ Ψ =   . . . . ...  . . . .  . . . . ρ ρ ρ ... 1 1 + q ( q + 1 ) Number of parameters: 2 Roy and Khatree, 2005, Roy and Leiva, 2008, Filipiak et al., 2016 K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 8 / 20

  9. Hypothesis Hypothesis H 0 : Ω = Ψ ⊗ Σ , Ψ UN H A : Ω UN Degrees of freedom: ν = pq ( pq + 1 ) − q ( q + 1 ) − p ( p + 1 ) − 1 2 2 2 K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 9 / 20

  10. Hypothesis Hypothesis H 0 : Ω = Ψ ⊗ Σ , Ψ AR(1) or CS H A : Ω UN Degrees of freedom: ν = pq ( pq + 1 ) − q ( q + 1 ) − 1 2 2 K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 10 / 20

  11. Likelihood ratio test X = [ vec X 1 , vec X 2 ,..., vec X n ] ∈ R pq , n – data matrix ln L ( µ , Ω ; X ) – log-likelihood function (partially differentiable with respect to each coordinate of θ for every X ). Likelihood ratio (LR) Λ = max H 0 L max H A L Likelihood ratio test statistics χ 2 − 2ln Λ ∼ ν app K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 11 / 20

  12. Rao’s score test Rao’s score (RS) s ′ ( � θ ) F − 1 ( � θ ) s ( � θ ) � θ – MLE of θ � � ′ � � ′ = ∂ ln L ∂ ln L s ′ 1 ( θ ) , s ′ s ( θ ) = 2 ( θ ) ∂ vec ′ µ , – score vector ∂ vech ′ Ω � � ∂ s ( θ ) F ( θ ) = − E – Fisher information matrix (invertible) ∂θ ′ Rao’s score test statistics s ′ ( � θ ) F − 1 ( � θ ) s ( � χ 2 θ ) ∼ ν app K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 12 / 20

  13. Hypothesis H 0 : Ω = Ψ ⊗ Σ , Ψ UN, AR(1) or CS H A : Ω UN RS test statistics �� � 2 � RS = n Ψ − 1 ⊗ � n XQ 1 n X ′ ( � 1 Σ − 1 ) − I pq 2tr n 1 n 1 ′ Q 1 n = I n − 1 n K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 13 / 20

  14. Remark RST statistic depends only on the data matrix X , an estimate of Ψ and Σ . Thus, the minimum number of samples needed to calculate RST statistic is: max { p , q } + 1 if Ψ is UN; q + 1 if Ψ is AR(1) or CS, whereas the minimum number of samples needed to calculate LRT statis- tic is pq + 1 , since it depends on the MLE of a pq × pq variance-covariance matrix Ω . K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 14 / 20

  15. Theorem Theorem The distributions of both LRT and RST statistics under the null hypothesis of separability of Ψ ⊗ Σ with first component as UN, AR(1) or CS, do not depend on the true values of µ or Σ . Moreover, if Ψ is UN or CS, the distributions of both test statistics do not depend on the true value of Ψ . K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 15 / 20

  16. Simulation study - empirical Type I error α LRT � α RST � � α LRT α RST � H 0 p q n n UN ⊗ UN 5 5 6 — 0.536 30 1.000 0.028 AR(1) ⊗ UN 12 2 — 0.361 0.999 0.030 CS ⊗ UN 12 2 — 0.363 0.999 0.030 UN ⊗ UN 5 5 10 — 0.150 50 0.794 0.019 AR(1) ⊗ UN 12 2 — 0.131 0.691 0.020 CS ⊗ UN 12 2 — 0.132 0.691 0.020 UN ⊗ UN 5 5 15 — 0.067 100 0.187 0.014 AR(1) ⊗ UN 12 2 — 0.069 0.151 0.014 CS ⊗ UN 12 2 — 0.069 0.150 0.014 UN ⊗ UN 5 5 20 — 0.045 150 0.083 0.013 AR(1) ⊗ UN 12 2 — 0.046 0.069 0.014 CS ⊗ UN 12 2 — 0.046 0.069 0.014 UN ⊗ UN 5 5 25 — 0.033 200 0.052 0.012 AR(1) ⊗ UN 12 2 1.000 0.034 0.044 0.013 CS ⊗ UN 12 2 1.000 0.034 0.045 0.013 K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 16 / 20

  17. Simulation study - Empirical null distribution LRT 95 th RST 95 th n p q H 0 4 5 2 UN ⊗ UN — — 3 3 AR(1) ⊗ UN — ( 62.223 ) 3 3 CS ⊗ UN — (62.262) 10 5 2 UN ⊗ UN — 55.044 3 3 AR(1) ⊗ UN ( 145.064 ) ( 56.266 ) 3 3 CS ⊗ UN (145.131) (56.237) 25 5 2 UN ⊗ UN 69.799 54.298 3 3 AR(1) ⊗ UN ( 66.399 ) ( 54.563 ) 3 3 CS ⊗ UN (66.379) (54.496) 50 5 2 UN ⊗ UN 60.457 53.907 3 3 AR(1) ⊗ UN ( 59.065 ) ( 53.734 ) 3 3 CS ⊗ UN (59.034) (53.727) 100 5 2 UN ⊗ UN 56.523 53.603 3 3 AR(1) ⊗ UN ( 55.923 ) ( 53.558 ) 3 3 CS ⊗ UN (55.892) (53.527) 200 5 2 UN ⊗ UN 54.861 53.474 3 3 AR(1) ⊗ UN ( 54.533 ) ( 53.348 ) 3 3 CS ⊗ UN (54.536) (53.373) 5 (3) 2 (3) (Sep. struc) 53.384 53.384 ∞ K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 17 / 20

  18. Monkey data set (McKiernan et al, 2009) n = 12 subjects (rhesus monkeys) q = 3 characteristics (body weight, % body fat, % maximum mass of upper leg) p = 3 time points 6th year 9th year 12th year Weight % BF % MM Weight % BF % MM Weight % BF % MM 1 15.97 28.31 92.9 15.80 30.58 64.3 14.93 32.64 54.6 2 12.25 16.52 94.6 13.98 25.12 93.2 13.96 26.74 82.6 3 18.52 31.55 96.9 19.09 33.54 88.6 19.09 34.64 85.4 4 11.85 27.25 93.6 14.69 39.39 85.8 14.79 44.14 71.5 5 14.48 19.36 99.0 15.06 23.42 88.7 14.56 24.62 90.3 6 14.70 26.38 94.9 13.90 26.93 88.4 13.06 27.11 78.2 7 13.26 22.54 96.3 14.00 30.82 81.8 13.46 30.54 74.6 8 13.67 21.42 88.4 16.70 26.62 82.0 15.47 27.32 77.8 9 15.33 24.85 98.9 14.68 30.58 69.1 11.58 24.11 60.5 10 10.96 16.79 95.3 10.69 17.55 90.7 8.32 9.46 82.0 11 12.92 22.54 94.9 12.02 20.43 87.9 11.61 24.15 84.5 12 11.10 15.65 94.6 14.58 29.52 83.5 13.30 30.93 77.1 K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 18 / 20

  19. Monkey data set (McKiernan et al, 2009) LRT RST UN ⊗ UN AR(1) ⊗ UN CS ⊗ UN UN ⊗ UN AR(1) ⊗ UN CS ⊗ UN 1,2,3 Value 86.706 106.979 118.609 49.894 49.862 61.388 p − val : χ 2 0 . 039 0 . 094 0 . 0095 0 0 0 ν p − val : END ( 0 . 05 , 0 . 1 ) ( 0 . 01 , 0 . 05 ) < 0 . 01 ( 0 . 05 , 0 . 1 ) ( 0 . 1 , 0 . 15 ) ( 0 . 01 , 0 . 05 ) 1,2 Value 11.493 21.753 30.251 11.295 17.532 26.254 p − val : χ 2 0 . 430 0 . 194 0 . 025 0 . 414 0 . 419 0 . 070 ν p − val : END ( 0 . 85 , 0 . 9 ) ( 0 . 6 , 0 . 65 ) ( 0 . 2 , 0 . 25 ) 0 . 75 ( 0 . 5 , 0 . 55 ) ( 0 . 05 , 0 . 1 ) 2,3 Value 19.241 45.215 54.675 16.458 30.364 40.096 p − val : χ 2 0 . 116 0 0 0 . 225 0 . 024 0 . 0012 ν p − val : END ( 0 . 45 , 0 . 50 ) ( 0 . 01 , 0 . 05 ) ( < 0 . 01 ) ( 0 . 30 , 0 . 35 ) ( 0 . 01 , 0 . 05 ) < 0 . 01 1,3 Value 28.619 47.578 57.264 25.842 29.381 36.715 p − val : χ 2 0 . 007 0 0 0 . 018 0 . 031 0 . 004 ν p − val : END ( 0 . 1 , 0 . 15 ) ( 0 . 01 , 0 . 05 ) < 0 . 01 ( 0 . 01 , 0 . 05 ) ( 0 . 01 , 0 . 05 ) < 0 . 01 K. Filipiak (Pozna´ n, Poland) Rao’s score test 01.12.2016 19 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend