a characterization of combinatorial demand
play

A characterization of combinatorial demand C. Chambers F. Echenique - PowerPoint PPT Presentation

A characterization of combinatorial demand C. Chambers F. Echenique UC San Diego Caltech Montreal Nov 19, 2016 This paper Literature on matching (e.g Kelso-Crawford) and combinatorial auctions (e.g Milgrom): D ( p ) = argmax { v ( A )


  1. A characterization of combinatorial demand C. Chambers F. Echenique UC San Diego Caltech Montreal Nov 19, 2016

  2. This paper Literature on matching (e.g Kelso-Crawford) and combinatorial auctions (e.g Milgrom): � D ( p ) = argmax { v ( A ) − p a : A ⊆ X } (*) a ∈ A When is * true? What is the behavioral content of the combined assumptions of rationality and quasilinearity ? Chambers-Echenique Combinatorial demand

  3. Notation ◮ Let X be a finite set (of items ). ◮ Let S be the set of all nonempty subsets of 2 X ◮ (so the empty set is not in S , but { ∅ } is). ◮ Identify A ⊆ X with 1 A ∈ R X . ◮ If p ∈ R X then � p , A � = � x ∈ A p x . Chambers-Echenique Combinatorial demand

  4. Demand A demand function is D : R X ++ → S p ∈ R X s.t. ∃ ¯ ++ with D ( p ) = { ∅ } for all p ≥ ¯ p . (¯ p a choke price) Chambers-Echenique Combinatorial demand

  5. Demand D is quasilinear rationalizable if ∃ v : 2 X → R s.t D ( p ) = argmax A ⊆ X v ( A ) − � p , A � Chambers-Echenique Combinatorial demand

  6. Suppose D is QL-rationalizable Let A ∈ D ( p ) and B ∈ D ( q ). v ( A ) − � p , A � ≥ v ( B ) − � p , B � v ( B ) − � q , B � ≥ v ( A ) − � q , A � . Thus: � p − q , A − B � ≤ 0. Chambers-Echenique Combinatorial demand

  7. Suppose D is QL-rationalizable Let A ∈ D ( p ) and B ∈ D ( q ). v ( A ) − � p , A � ≥ v ( B ) − � p , B � v ( B ) − � q , B � ≥ v ( A ) − � q , A � . Thus: � p − q , A − B � ≤ 0. The law of demand! Chambers-Echenique Combinatorial demand

  8. Demand A demand function D ◮ satisfies the law of demand if for all p , q ∈ R X ++ , and all A ∈ D ( p ) and B ∈ D ( q ), � p − q , A − B � ≤ 0; ◮ is upper hemicontinuous if, ∀ p ∈ R X ++ , ∃ nbd V of p s.t. D ( q ) ⊆ D ( p ) when q ∈ V . Chambers-Echenique Combinatorial demand

  9. Main result Theorem A demand function is quasilinear rationalizable iff it is upper hemicontinuous and satisfies the law of demand. Chambers-Echenique Combinatorial demand

  10. Identification Theorem For any quasilinear rationalizable D, there is a unique monotone v : 2 X → R for which v ( ∅ ) = 0 which rationalizes D. Utility is identified up to an additive constant. Chambers-Echenique Combinatorial demand

  11. Monotone rationalization D is monotone, concave, quasilinear rationalizable (MCQ-rationalizable) if ∃ a monotone, concave g : R X + → R s.t v ( A ) = g (1 A ), and D ( p ) = argmax { v ( A ) − � p , A � : A ⊆ X } . Corollary If a demand function is quasilinear rationalizable, then it is MCQ-rationalizable. Chambers-Echenique Combinatorial demand

  12. Proof ideas D ( p ) = argmax A ⊆ X v ( A ) − � p , A � If A ∈ D ( p ) then we want p to be the “gradient of v at A .” Can recover v by “integrating” over p . Chambers-Echenique Combinatorial demand

  13. Chambers-Echenique Combinatorial demand

  14. Cyclic monotonicity D satisfies cyclic monotonicity if, for all n (using summation mod n ), n � � p i , A i − A i +1 � ≤ 0 , i =1 where A i ∈ D ( p i ), for all sequences { p i } n i =1 . Chambers-Echenique Combinatorial demand

  15. Cyclic monotonicity Define: v ( A ) = inf � p 1 , A − A 1 � + . . . + � ¯ p , A k − ∅ � , inf is taken over all finite seq. ( p i , A i ) k i =1 with A i ∈ D ( p i ). Chambers-Echenique Combinatorial demand

  16. Cyclic monotonicity Define: v ( A ) = inf � p 1 , A − A 1 � + . . . + � ¯ p , A k − ∅ � , inf is taken over all finite seq. ( p i , A i ) k i =1 with A i ∈ D ( p i ). Observe, by CM, − {� p 1 , A − A 1 � + . . . + � ¯ p , A k − ∅ �} + � p , A − ∅ � ≤ 0 . So v ( A ) is well defined (and ≥ 0). Chambers-Echenique Combinatorial demand

  17. Let A ∈ D ( p ) and B ⊆ X ( B ∈ D ( R X ++ ) need a different arg. otherwise). By defn. of v , v ( B ) ≤ � p , B − A � + v ( A ) . Thus v ( A ) − � p , A � ≥ v ( B ) − � p , B � . Chambers-Echenique Combinatorial demand

  18. Let A ∈ D ( p ) and B ⊆ X ( B ∈ D ( R X ++ ) need a different arg. otherwise). By defn. of v , v ( B ) ≤ � p , B − A � + v ( A ) . Thus v ( A ) − � p , A � ≥ v ( B ) − � p , B � . Proof that if A ∈ D ( p ) and B / ∈ D ( p ) then v ( A ) − � p , A � > v ( B ) − � p , B � requires more. Chambers-Echenique Combinatorial demand

  19. D satisfies condition ♠ if ∈ D ( p ) ∃ A ∈ D ( p ) and p ′ s.t ∀ p and B / A ∈ D ( p ′ ) and � p ′ , A − B � > � p , A − B � . Lemma If D is upper hemicontinuous, then it satisfies condition ♠ . Chambers-Echenique Combinatorial demand

  20. Cyclic monotonicity Lemma If D satisfies cyclic monotonicity, and condition ♠ , then it is quasilinear rationalizable. Based on ideas in Rochet/Rockafellar (but ♠ plays a technical role). Chambers-Echenique Combinatorial demand

  21. Lemma A demand function satisfies cyclic monotonicity if it satisfies the law of demand. Follows from recent results in mech. design (Lavi, Mu’alem, and Nisan; Saks and Yu; and Ashlagi, Braverman, Hassidim, and Monderer). Chambers-Echenique Combinatorial demand

  22. Related literature ◮ Rochet/Rockafeller ◮ Brown and Calsamiglia ◮ Sher and Kim ◮ Lavi, Mu’alem, and Nisan; ◮ Saks and Yu; ◮ Ashlagi, Braverman, Hassidim, and Monderer Chambers-Echenique Combinatorial demand

  23. Conclusions ◮ Quasilinear rational demand is a ubiquitous assumption. ◮ Our result is the first characterization in terms of observable behavior. ◮ Identification enables welfare analysis. ◮ New use for recent results in mech. design. Chambers-Echenique Combinatorial demand

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend