a cellular basis of the q brauer algebra
play

A cellular basis of the q-Brauer algebra Nguyen Tien Dung Vinh - PowerPoint PPT Presentation

Vinh University A cellular basis of the q-Brauer algebra Nguyen Tien Dung Vinh University 09 Sep, 2014 Dung Nguyen Tien Vinh University Wenzl (2012) Version that contains H n ( q ) Fix N Z \ { 0 } , let q and r be invertible elements.


  1. Vinh University A cellular basis of the q-Brauer algebra Nguyen Tien Dung Vinh University 09 Sep, 2014 Dung Nguyen Tien

  2. Vinh University Wenzl (2012) Version that contains H n ( q ) Fix N ∈ Z \ { 0 } , let q and r be invertible elements. Moreover, assume that if q = 1 then r = q N . The q-Brauer algebra Br n ( r , q ) is defined over the ring Z [ q ± 1 , r ± 1 , (( r − 1) / ( q − 1)) ± 1 ] by generators g 1 , g 2 , g 3 , ..., g n − 1 and e and relations (H) The elements g 1 , g 2 , g 3 , ..., g n − 1 satisfy the relations of the Hecke algebra H n ; ( E 1 ) e 2 = r − 1 q − 1 e ; ( E 2 ) eg i = g i e for i > 2 , eg 1 = g 1 e = qe , eg 2 e = re and eg − 1 2 e = q − 1 e ; ( E 3 ) e (2) = g 2 g 3 g − 1 1 g − 1 2 e (2) = e (2) g 2 g 3 g − 1 1 g − 1 2 , where e (2) = e ( g 2 g 3 g − 1 1 g − 1 2 ) e . The elements e ( k ) in Br n ( r , q ) are defined inductively by e (1) = e and by e ( k +1) = eg + 2 , 2 k +1 g − 1 , 2 k e ( k ) . Dung Nguyen Tien

  3. Vinh University Dung (2014) Version that contains H n ( q 2 ) Let r and q be invertible elements over the ring Z [ q ± 1 , r ± 1 , ( r − r − 1 q − q − 1 ) ± 1 ]. Moreover, if q = 1 then assume that r = q N with N ∈ Z \ { 0 } . The q -Brauer algebra Br n ( r 2 , q 2 ) over Z [ q ± 1 , r ± 1 , ( r − r − 1 q − q − 1 ) ± 1 ] is the algebra defined via generators g 1 , g 2 , g 3 , ..., g n − 1 and e and relations (H) The elements g 1 , g 2 , g 3 , ..., g n − 1 satisfy the relations of the Hecke algebra H n ; ( E 1 ) e 2 = r − r − 1 q − q − 1 e ; ( E 2 ) eg i = g i e for i > 2 , eg 1 = g 1 e = q 2 e , eg 2 e = rqe and eg − 1 2 e = ( rq ) − 1 e ; ( E 3 ) g 2 g 3 g − 1 1 g − 1 2 e (2) = e (2) g 2 g 3 g − 1 1 g − 1 2 . Dung Nguyen Tien

  4. Vinh University Notations in Theorem 1 k an integer, 0 ≤ k ≤ [ n / 2] B k , n = { u ∈ B k | ℓ ( d ) = ℓ ( u ) with d = e ( k ) u ∈ D k , n } S 2 k +1 , n = F { s 2 k +1 , s 2 k +2 , · · · , s n − 1 } (the symmetric group) H 2 k +1 , n = F { g s , s ∈ S 2 k +1 , n } (the Hecke algebra) S λ : The Young subgroup of S 2 k +1 , n Std ( λ ): The set of all standard λ - tableaux Λ n := { ( k , λ ) | λ is a partition of n − 2 k } λ ☎ µ : if | µ | > | λ | or | µ | = | λ | and � m i =1 λ i ≥ � m i =1 µ i I n ( k , λ ) := { ( s , u ) : s ∈ Std ( λ ) and u ∈ B k , n } c µ = � m µ = e ( k ) c µ = c µ e ( k ) ; σ ∈ S µ g σ λ ˇ Br n := � � � ( s , u ) , ( t , v ) ∈ I n ( l , µ ) x µ � ( s , u )( t , v ) := g ∗ u g ∗ d ( s ) m µ g d ( t ) g v � µ ✄ λ for ( l , µ ) , ( k , λ ) ∈ Λ n � Dung Nguyen Tien

  5. Vinh University Dung Nguyen Tien

  6. Vinh University Example The Murphy basis of H 3 , 5 : { c st = g ∗ d ( s ) c λ g d ( t ) } 5 , we have c (1 3 ) 3 With t = , s = , p = 3 4 5 , q = = 1, 3 4 3 5 4 qq 5 4 c tt = 1 + g 3 , c ts = (1 + g 3 ) g 4 , c st = g 4 (1 + g 3 ), c ss = g 4 (1 + g 3 ) g 4 , c pp = 1 + g 3 + g 4 + g 3 g 4 + g 4 g 3 + g 4 g 3 g 4 . The presentation of g π = g 3 g 4 in The Murphy basis of H 3 , 5 g π = g 3 g 4 = q 2 − 1 c ts + 1 q 2 c pp − 1 q 2 c tt − 1 q 2 c st − 1 q 2 c ss + c qq q 2 Dung Nguyen Tien

  7. Vinh University Example The Murphy basis of H 3 , 5 : { c st = g ∗ d ( s ) c λ g d ( t ) } 5 , we have c (1 3 ) 3 With t = , s = , p = 3 4 5 , q = = 1, 3 4 3 5 4 qq 5 4 c tt = 1 + g 3 , c ts = (1 + g 3 ) g 4 , c st = g 4 (1 + g 3 ), c ss = g 4 (1 + g 3 ) g 4 , c pp = 1 + g 3 + g 4 + g 3 g 4 + g 4 g 3 + g 4 g 3 g 4 . The presentation of g π = g 3 g 4 in The Murphy basis of H 3 , 5 g π = g 3 g 4 = q 2 − 1 c ts + 1 q 2 c pp − 1 q 2 c tt − 1 q 2 c st − 1 q 2 c ss + c qq q 2 Dung Nguyen Tien

  8. Vinh University Example The presentation of g π = g 3 g 4 in The Murphy basis of H 3 , 5 g π = g 3 g 4 = q 2 − 1 c ts + 1 q 2 c pp − 1 q 2 c tt − 1 q 2 c st − 1 q 2 c ss + c qq q 2 The presentation of g d = g ∗ u eg π g v in the cell basis of Br 5 ( r 2 , q 2 ) u eg π g v = q 2 − 1 ( t , u )( s , v ) + 1 ( p , u )( p , v ) − 1 x (2 , 1) q 2 x (3) q 2 x (2 , 1) g d = g ∗ ( t , u )( t , v ) q 2 − 1 ( s , u )( t , v ) − 1 ( s , u )( s , v ) + x (1 3 ) q 2 x (2 , 1) q 2 x (2 , 1) ( q , u )( q , v ) , with x λ ( s , u )( t , v ) = g ∗ u ec st g v = g ∗ u g ∗ d ( s ) ec λ g d ( t ) g v = g ∗ u g ∗ d ( s ) m λ g d ( t ) g v Dung Nguyen Tien

  9. Vinh University Notations in Theorem 2 F : A field of characteristic p rad ( C ( k , λ )) = { x ∈ C ( k , λ ) | � x , y � λ = 0 for all y ∈ C ( k , λ ) } D ( k , λ ) = C ( k , λ ) / rad ( C ( k , λ )) . d λµ = [ C ( k , λ ) : D ( l , µ )]: the composition multiplicity of D ( l , µ ) in C ( k , λ ) Dung Nguyen Tien

  10. Vinh University A semisimplicity criteria of the q -Brauer algebra for n = 2 , 3 Let F be a field with char ( F ) = p . Then, 1 Br 2 ( r 2 , q 2 ) is semisimple < = > e ( q 2 ) > 2. 2 Br 3 ( r 2 , q 2 ) is semisimple < = > e ( q 2 ) > 3 and 3 q 5 ( r 2 − q 2 ) 2 ( q 4 r 2 − 1) � = 0 r 3 ( q 2 − 1) 3 3 Br 2 ( r , q ) is semisimple < = > e ( q ) > 2. 4 Br 3 ( r , q ) is semisimple < = > e ( q ) > 3 and 3 q ( r − q ) 2 ( q 2 r − 1) � = 0 ( q − 1) 3 5 Br 2 ( N ) is semisimple < = > e ( q ) > 2. 6 Br 3 ( N ) is semisimple < = > e ( q ) > 3 and 3 q 4 ( q N − q [ N ])([ N ] + q N +1 + q N +3 ) � = 0 Dung Nguyen Tien

  11. Vinh University Ex1 Over field C , the q -Brauer algebra and the BMW-algebra simultaneously depend on two parameters r and q . Calculation shows that C BMW-algebra q -Brauer algebra ( r , q 2 ) = ( q − 1 , − i ) Br 3 ( r 2 , q 2 ) is semisimple B 3 is not semisimple √ ( r , q ) = ( q − 1 , i i ) B 3 is not semisimple Br 3 ( r , q ) is semisimple Ex2 Over field F with char ( F ) = 5. The total parameter values, such that the algebras are not semisimple, are summarized in the following table. The non-semisimple case F 5 × F 5 ( r , q ) ∈ ( { ¯ 1 , ¯ 2 , ¯ 3 , ¯ 4 } × { ¯ 2 , ¯ 3 } ) ∪ ( { ¯ The BMW-algebra B 2 2 , The q -Brauer algebra Br 2 ( r 2 , q 2 ) ( r , q ) ∈ { ¯ 2 , ¯ 3 } × { ¯ 2 , ¯ 3 } ( r , q ) ∈ { ¯ 2 , ¯ 3 , ¯ 4 } × { ¯ The q -Brauer algebra Br 2 ( r , q ) 4 } Dung Nguyen Tien

  12. Vinh University Thank for your attention Dung Nguyen Tien

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend