a 100 a ch fully integrable lock in multi channel
play

A 100 A/Ch Fully-Integrable Lock-in Multi-Channel Frontend for - PowerPoint PPT Presentation

IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 1/23 A 100 A/Ch Fully-Integrable Lock-in Multi-Channel Frontend for Infrared Spectroscopic Gas Recognition S. Sutula, C. Ferrer and F. Serra-Graells


  1. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 1/23 A 100 µ A/Ch Fully-Integrable Lock-in Multi-Channel Frontend for Infrared Spectroscopic Gas Recognition S. Sutula, C. Ferrer and F. Serra-Graells stepan.sutula@imb-cnm.csic.es Integrated Circuits and Systems (ICAS) Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC) June 2010 S. Sutula et al. IMB-CNM(CSIC)

  2. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 2/23 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 CMOS Integration and Experimental Results 7 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  3. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 3/23 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 CMOS Integration and Experimental Results 7 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  4. ������� ����� ������� �� ������ ��������� ���� ��� ����� ���� ������� ������ ����� �� ������ �� ����� ������� ������ ������� ���� ���� ���� ��� ������� ����������� ���������� ���������� ��� ����������� ��� �� IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 4/23 Introduction ◮ Real-time gas recognition for environmental monitoring, toxic gas detection. . . ◮ IR spectroscopic absorption digital fingerprint ◮ Thermal µ bolometer LWIR sensing array ◮ Multi-channel ROIC for fast acquisition and low-noise ◮ Channel lock-in demodulation for high-accuracy ◮ Low-power operation to avoid thermal drifts of IR sensors ◮ Compact pitch for direct sensors-ROIC bonding S. Sutula et al. IMB-CNM(CSIC)

  5. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 5/23 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 CMOS Integration and Experimental Results 7 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  6. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 6/23 ROIC Channel Architecture ◮ High programmability f c (2bit) progin I bias (2bit) Config. event Register ◮ No external progout + V th components G m (2bit) G (2bit) C int 1 (� bit) V amp up datain V int ◮ Built-in bias V sens 20bit event R sens Counter I eff dataout generators for low down Bias & ref. - V th generator crosstalk A/D Converter ◮ Digital only interface V com V blind V lockin ◮ External lock-in synchronization ∆ V sens = I bias ∆ R sens ◮ Dedicated blind channel for cancellation of common disturbing signals ◮ Individual configuration register per channel S. Sutula et al. IMB-CNM(CSIC)

  7. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 7/23 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 CMOS Integration and Experimental Results 7 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  8. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 8/23 Pre-Amplification and Filtering ◭ Sub-Hz high-pass specs I tun V tun ◭ Independent gain and corner M2 P £ programmability required M1 ◮ Highly linear cap amplifier: C B G = ∆ V amp ∆ V sens = C A C B init ◮ Subthreshold MRC filtering: C A V sens V amp I tun ( PTAT ) f co = 1 − Vcorner f c = f co e Ut 2 π C B U t ◮ Fast initialization switch + V corner V ref S. Sutula et al. IMB-CNM(CSIC)

  9. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 9/23 Pre-Amplification and Filtering ◮ Gain tuning by P scaling I tun V tun ◮ Multi-decade filter log tuning: M2 P £ V corner = M ∆ V corner = MU t ln ( NK ) M1 f co f c = ( NK ) M C B f c × 10 ± 3 ⇔ V corner ± 173mV at 25 o C init 1 : N 1 : N C A V sens V amp M £ M1 M2 1 V ref K 1 K + V corner V ref ¢ V corner V corner S. Sutula et al. IMB-CNM(CSIC)

  10. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 10/23 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 CMOS Integration and Experimental Results 7 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  11. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 11/23 Blind Cancellation and Lock-in Demodulation ◮ Differential to single ended M7 M8 ◮ Voltage-to- current conversion I ota ◮ Lock-in demodulation I eff V amp V blind M1 M2 + V ref ◮ Low-power subthreshold OTA : PDM stage V lockin of the ADC ∆ V amp = I ota I eff G m = 2 nU t ∝ U t M4 M3 M5 M6 I ota ∝ I S = 2 n β U 2 t (cascode topology not shown) ◮ Current-domain lock-in demodulation by cross-coupling ◮ Voltage log compression allows fast switching at low-power S. Sutula et al. IMB-CNM(CSIC)

  12. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 12/23 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 CMOS Integration and Experimental Results 7 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  13. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 13/23 Integrating A/D Conversion event ◮ PDM noise shaping + V th C int 1 (� bit) ◮ Digital counter as low-pass filter up datain V int 20bit event Counter ◮ Asynchronous operation for very I eff dataout down low-power and low-crosstalk - V th Pulse density modulation Digital filtering S. Sutula et al. IMB-CNM(CSIC)

  14. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 14/23 Integrating A/D Conversion init ◮ PDM noise shaping C int V ref + V th ◮ Digital counter as low-pass filter I eff up V int ◮ Asynchronous operation for very event low-power and low-crosstalk event down ◮ Loss-less analog integrator with CDS C reset CDS / V - V ref th for high-linearity and noise reduction: V ref I eff f PDM = C int V th S. Sutula et al. IMB-CNM(CSIC)

  15. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 15/23 Integrating A/D Conversion init ◮ PDM noise shaping C int V ref + V th ◮ Digital counter as low-pass filter I eff up V int ◮ Asynchronous operation for very event low-power and low-crosstalk event down ◮ Loss-less analog integrator with CDS C reset CDS / V - V ref th for high-linearity and noise reduction: V ref I eff f PDM = V ref C int V th M1 M3 ◮ Built-in threshold comparator: up down V th = nU t ln X M4 M5 1 X X 1 ◮ Thermal compensation of G m : V int n adc = T samp f PDM = C A G m T samp q adc = ⌊ n adc ⌋ C int ∆ R sens C B V th S. Sutula et al. IMB-CNM(CSIC)

  16. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 16/23 1 Introduction 2 ROIC Channel Architecture 3 Pre-Amplification and Filtering 4 Blind Cancellation and Lock-in Demodulation 5 Integrating A/D Conversion 6 CMOS Integration and Experimental Results 7 Conclusions S. Sutula et al. IMB-CNM(CSIC)

  17. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 17/23 CMOS Integration and Experimental Results blind 10�full�channels channel channel for�crosstalk�study blocks ◮ 0.35 µ m 2P4M CMOS channel module test chip ◮ Main design parameters : C A = 20 pF C B = { 0 . 1 , 0 . 2 , 0 . 4 , 1 } pF K = 10 N = { 1 , 11 } sensor config. M = 3 bias register I tun = 100 nA async. high-pass counter I ota = { 1 , 2 , 5 , 10 } µ A pre-amp V th = 120 mV reference�generator PDM 100 m ¹ T pulse = 500 ns ◮ Access to intermediate stages S. Sutula et al. IMB-CNM(CSIC)

  18. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 18/23 CMOS Integration and Experimental Results 50 40 ◮ Sub-Hz pre-amplifier sens [dB] 11 10 01 corner<1:0>=00 30 independent tuning j 20 (16 configurations) V 10 /¢ 0 amp V -10 ¢ j -20 -30 50 11 40 10 sens [dB] 01 30 gain<1:0>=00 j 20 V 10 /¢ amp 0 V -10 ¢ j -20 -30 0.1 1 10 100 1k 10k 100k Frequency [Hz] S. Sutula et al. IMB-CNM(CSIC)

  19. IEEE ISCAS 2010 Intro Channel Preamp Blind-Lock ADC Results Conclusions 19/23 CMOS Integration and Experimental Results 1 2 T pulse ◮ Sub-Hz pre-amplifier 1M independent tuning (16 configurations) ◮ Highly linear PDM 100k up to pulse width f PDM [Hz] 11 hard limit 10 10k 01 transc<1:0>=00 1k 0.1 1 10 100 ¢ [mV] V amp for cint<0>=0 S. Sutula et al. IMB-CNM(CSIC)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend