9
play

9 MultiFreedom Constraints I IFEM Ch 9 Slide 1 Department of - PDF document

Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM 9 MultiFreedom Constraints I IFEM Ch 9 Slide 1 Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Multifreedom Constraints


  1. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM 9 MultiFreedom Constraints I IFEM Ch 9 – Slide 1

  2. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Multifreedom Constraints Single freedom constraint examples u x 4 = 0 linear, homogeneous u y 9 = 0 . 6 linear, non-homogeneous Multifreedom constraint examples u x 2 = 1 2 u y 2 linear, homogeneous u x 2 − 2 u x 4 + u x 6 = 0 . 25 linear, non-homogeneous ( x 5 + u x 5 − x 3 − u x 3 ) 2 + ( y 5 + u y 5 − y 3 − u y 3 ) 2 = 0 nonlinear, homogeneous IFEM Ch 9 – Slide 2

  3. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Sources of Multifreedom Constraints "Skew" displacement BCs Coupling nonmatched FEM meshes Global-local and multiscale analysis Incompressibility Model reduction IFEM Ch 9 – Slide 3

  4. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM MFC Application Methods Master-Slave Elimination Chapter 9 Penalty Function Augmentation   Chapter 10 Lagrange Multiplier Adjunction  IFEM Ch 9 – Slide 4

  5. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Example 1D Structure to Illustrate MFCs u 1 , f 1 u 2 , f 2 u 3 , f 3 u 4 , f 4 u 5 , f 5 u 6 , f 6 u 7 , f 7 (1) (2) (3) (4) (5) (6) x 1 2 3 4 5 6 7 Multifreedom constraint: u 2 − u 6 = 0 u 2 = u 6 or Linear homogeneous MFC IFEM Ch 9 – Slide 5

  6. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Example 1D Structure (Cont'd) u 1 , f 1 u 2 , f 2 u 3 , f 3 u 4 , f 4 u 5 , f 5 u 6 , f 6 u 7 , f 7 (1) (2) (3) (4) (5) (6) x 1 2 3 4 5 6 7 Unconstrained master stiffness equations  K 11 K 12 0 0 0 0 0   u 1   f 1  K 12 K 22 K 23 0 0 0 0 u 2 f 2             0 K 23 K 33 K 34 0 0 0 u 3 f 3             = 0 0 K 34 K 44 K 45 0 0 u 4 f 4             0 0 0 K 45 K 55 K 56 0 u 5 f 5             0 0 0 0 K 56 K 66 K 67 u 6 f 6       0 0 0 0 0 K 67 K 77 u 7 f 7 Ku = f or IFEM Ch 9 – Slide 6

  7. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Master-Slave Method for Example Structure Recall: u 2 = u 6 u 2 − u 6 = 0 or Taking u as master: 2    1 0 0 0 0 0  u 1   u 1 u 2 0 1 0 0 0 0     u 2       0 0 1 0 0 0 u 3       u 3       = u 4 0 0 0 1 0 0       u 4       u 5 0 0 0 0 1 0       u 5       u 6 0 1 0 0 0 0     u 7 u 7 0 0 0 0 0 1 u = T ˆ u . or IFEM Ch 9 – Slide 7

  8. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Forming the Modified Stiffness Equations Unconstrained master Ku = f stiffness equations: u = T ˆ u Master-slave transformation: K = T T KT ˆ Congruential transformation: f = T T f ˆ ˆ u = ˆ K ˆ f Modified stiffness equations: IFEM Ch 9 – Slide 8

  9. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Modified Stiffness Equations for Example Structure ˆ ˆ ˆ K u = f In full       K 11 K 12 0 0 0 0 u 1 f 1 K 22 + K 66 f 2 + f 6 K 12 K 23 0 K 56 K 67 u 2             0 K 23 K 33 K 34 0 0 u 3 f 3       =       0 0 K 34 K 44 K 45 0 u 4 f 4             0 K 56 0 K 45 K 55 0 u 5 f 5       0 K 67 0 0 0 K 77 u 7 f 7 ˆ ˆ Solve for u , then recover u = T u IFEM Ch 9 – Slide 9

  10. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Multiple MFCs Suppose u 2 − u 6 = 0 , u 1 + 4 u 4 = 0 , 2 u 3 + u 4 + u 5 = 0 Pick 3, 4 and 6 as slaves: u 4 = − 1 u 3 = − 1 2 ( u 4 + u 5 ) = 1 8 u 1 − 1 u 6 = u 2 , 4 u 1 , 2 u 5 Put in matrix form: 1 0 0 0    u 1  0 1 0 0 u 2     u 1     1 − 1   0 0 u 3   8 2   u 2     = − 1 u 4     0 0 0   u 5   4     u 5     0 0 1 0   u 7     u 6   0 1 0 0   u 7 0 0 0 1 ˆ This is u = T u - then proceed as before IFEM Ch 9 – Slide 10

  11. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Non-homogeneous MFCs u 2 − u 6 = 0 . 2 Pick again u as slave, put into matrix form: 6       u 1 1 0 0 0 0 0 0  u 1  u 2 0 1 0 0 0 0 0       u 2         u 3 0 0 1 0 0 0 0         u 3 +         = u 4 0 0 0 1 0 0 0         u 4         u 5 0 0 0 0 1 0 0         u 5 −0.2         u 6 0 1 0 0 0 0       u 7 u 7 0 0 0 0 0 1 0 IFEM Ch 9 – Slide 11

  12. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Nonhomogeneous MFCs (cont'd) ˆ u = T u + g g = "gap" vector T Premultiply both sides by T K , replace K u = f and pass data to RHS. This gives ˆ ˆ ˆ K u = f K = T K T and f = T (f − K g) ˆ ˆ with T T a modified force vector For the example structure       K 11 K 12 0 0 0 0 u 1 f 1 K 22 + K 66 f 2 + f 6 − 0 . 2 K 66 K 12 K 23 0 K 56 K 67 u 2             0 K 23 K 33 K 34 0 0 u 3 f 3       =       0 0 K 34 K 44 K 45 0 u 4 f 4             f 5 − 0 . 2 K 56 0 K 56 0 K 45 K 55 0 u 5       0 0 0 0 f 7 − 0 . 2 K 67 K 67 K 77 u 7 ˆ ˆ Solve for u , then recover u = T u + g IFEM Ch 9 – Slide 12

  13. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Model Reduction Example u 1 , f 1 u 2 , f 2 u 3 , f 3 u 4 , f 4 u 5 , f 5 u 6 , f 6 u 7 , f 7 (1) (2) (3) (4) (5) (6) x 1 2 3 4 5 6 7 2 master DOFs to be retained u 1 , f 1 u 7 , f 7 x 1 7 5 slave DOFs to be eliminated IFEM Ch 9 – Slide 13

  14. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Model Reduction Example (cont'd) Lots of slaves, few masters. Only masters are left. Example of previous slide:  u 1   1 0  u 2 5 / 6 1 / 6         � u 1 u 3 4 / 6 2 / 6     �     = u 4 3 / 6 3 / 6 2 masters 5 slaves     u 7     u 5 2 / 6 4 / 6         u 6 1 / 6 5 / 6     u 7 0 1 Applying the congruential transformation we get the reduced stiffness equations � ˆ � ˆ � � u 1 ˆ � � K 11 K 17 f 1 = ˆ ˆ ˆ K 17 K 77 u 7 f 7 where ˆ 1 K 11 = 36 ( 36 K 11 + 60 K 12 + 25 K 22 + 40 K 23 + 16 K 33 + 24 K 34 + 9 K 44 + 12 K 45 + 4 K 55 + 4 K 56 + K 66 ) ˆ 1 K 17 = 36 ( 6 K 12 + 5 K 22 + 14 K 23 + 8 K 33 + 18 K 34 + 9 K 44 + 18 K 45 + 8 K 55 + 14 K 56 + 5 K 66 + 6 K 67 ) ˆ 1 K 77 = 36 ( K 22 + 4 K 23 + 4 K 33 + 12 K 34 + 9 K 44 + 24 K 45 + 16 K 55 + 40 K 56 + 25 K 66 + 60 K 67 + 36 K 77 ) ˆ ˆ f 1 = 1 f 7 = 1 6 ( 6 f 1 + 5 f 2 + 4 f 3 + 3 f 4 + 2 f 5 + f 6 ), 6 ( f 2 + 2 f 3 + 3 f 4 + 4 f 5 + 5 f 6 + 6 f 7 ). IFEM Ch 9 – Slide 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend