402 02 03 05 module assembly extrapolating experience
play

402.02.03.05 Module Assembly Extrapolating Experience from Phase 1 - PowerPoint PPT Presentation

402.02.03.05 Module Assembly Extrapolating Experience from Phase 1 Upgrade Matthew Jones, Purdue University February 2-3, 2016 February 2-3, 2016 M. Jones - 402.02.03.05 1 Outline Phase


  1. 402.02.03.05 Module Assembly – Extrapolating Experience from Phase 1 Upgrade Matthew Jones, Purdue University February 2-3, 2016 February ¡2-­‑3, ¡2016 ¡ M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ 1 ¡

  2. Outline § Phase 1 Module Overview § Module Assembly Process § Lessons from Pre-production Module Assembly § Conceptual Phase 2 Module Construction § Suggested Design Constraints § Summary M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 2 ¡

  3. Phase 1 Module Overview Module ¡end ¡holder ¡ Flat ¡flex ¡cable, ¡75 ¡cm ¡length ¡ (with ¡thru ¡hole ¡for ¡ (short ¡“connector ¡saver” ¡pigtail ¡flex ¡will ¡ #00 ¡or ¡M1.2 ¡screw) ¡ HDI ¡ TBM ¡ be ¡used ¡for ¡tesOng ¡during ¡assembly) ¡ FPIX ¡sensor ¡ ZIF ¡Connector ¡ 2x8 ¡ROCs ¡ Module ¡address ¡seYng ¡ HDI HDI Wirebond Sensor Sensor ROC Bump-bonds ROC Bump-bonds M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 3 ¡

  4. Phase 1 Module Assembly Sensor § Sensors produced and tested by Sintef ROC § PSI46dig ROC’s fabricated in 250 Bump-bonds nm by IBM § Bump bonding performed by external vendor (RTI) § UBM deposition, solder bumping § ROC thinning § Flip-chip assembly and Pb-Sn reflow § Process developed over 10 years ago, used reliably since then § Bump bonded modules shipped directly to assembly sites M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 4 ¡

  5. Phase 1 Module Assembly § High Density Interconnect § PCB manufactured by outside vendor § Design qualified to withstand bias voltage § Vendor performs electrical tests § Additional inspection and testing performed when received o Pad and trace widths o Metal thickness, surface quality o Wire bondability § Assembly of components (Fermilab) o Surface mount components o Placement and wire bonding of TBM o Assembly of mechanical interfaces (end holders) o Electrical tests M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 5 ¡

  6. Phase 1 Module Assembly § Module inspection under microscope § Last chance to observe and document anomalies before assembly § Re-inspection of HDI ? ¡ § Check metal on pads § Check for non-flatness WL_BB_044 ¡ § Re-measure bare module IV § IV measured again after assembly § Needed to qualify assembly process M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 6 ¡

  7. Phase 1 Module Assembly HDI HDI Wirebond Sensor Sensor ROC Bump-bonds ROC Bump-bonds § Assembly process: § Deposit epoxy on sensor (Araldite 2011) § Precisely position HDI on sensor, hold in place while epoxy cures § Form wire bonds between ROC’s and HDI § Encapsulate wire bonds § Thermal cycles, electrical tests § Two construction sites: Purdue and Nebraska § Substantially similar assembly process at both sites M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 7 ¡

  8. Phase 1 Module Assembly § Automatic robotic assembly under manual supervision § Simplifies training, reduces reliance on highly skilled technicians § Well suited for a small pool of undergraduate labor (3-4 students) M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 8 ¡

  9. Phase 1 Module Assembly § All assembly work performed on robotic gantry § Aerotech AGS10000 gantry, <10 µ m precision § Custom tooling holds parts using vacuum during assembly: bridge ¡ glue ¡ reservoir ¡ M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 9 ¡

  10. Phase 1 Module Assembly § Alignment of pads on ROC’s and HDI for wire bonding § Semi-automated assembly process: § Position sensor module, ROC side down on one fixture § Position HDI, component side up, on a second fixture § Acquire fiducials on sensor module and HDI § Mix Araldite 2011 epoxy and spread in glue reservoir § Pick up stamp tool, coat with epoxy from reservoir § Stamp epoxy onto sensor side of bare module M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 10 ¡

  11. Phase 1 Module Assembly § Semi-automated assembly process: § Pick up HDI using bridge tool and place on sensor § Transfer vacuum to bridge, rubber gasket applies force while epoxy cures (12 hours at room temperature) § Post-curing alignment check <50 µ m § Glued module placed on module carrier, where it will remain. M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 11 ¡

  12. Phase 1 Module Assembly § Semi-automated process HDI Wirebond § F&K Delvotek 6400 wire bonder Sensor § Pattern recognition software determines bond pad locations ROC Bump-bonds § Automatic bonding using predetermined parameters § Bond quality monitored by online graphs of bond deformation vs time § Bond ROCs 0..7, then flip module carrier to bond ROCs 8..15. § Less than one hour per module when all goes as planned. M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 12 ¡

  13. Phase 1 Module Assembly § Modules are tested before wire bonds are encapsulated. § Flex cable attached to ZIF connector – remains attached for all subsequent tests. § Tests based on PSI digital test board and associated software. § Test results are recorded in a database § Mainly looking for problems that can be fixed before encapsulation. § Such problems turn out to be rather uncommon. M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 13 ¡

  14. Phase 1 Module Assembly § Wire bonds are encapsulated for environmental and mechanical protection § Sylgard 186 silicone based elastomer o Transparent and relative re-workable § Encapsulating fixtures hold module carriers – separate work area from assembly fixtures. § Dispense onto bond feet only using robotic gantry and dispensing syringe + pressure multiplier. o Acquire fiducials, measure needle tip height using optics o Dispense lines of encapsulant onto ends of bond feet on both ROC and HDI sides o Volume of encapsulant and alignment is critical: avoid wicking into region between sensor and ROC § Also encapsulate wire bonds on TBM § Cures in an oven at 50 deg. C for 2-3 hours M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 14 ¡

  15. Phase 1 Module Assembly § Thermally cycle unpowered modules after encapsulation § Induces mechanical stress § 10 cycles from -30 to +50 C with 10 minute dwell times at each extreme § Chamber is purged with dry air throughout cycles § Primarily useful for qualifying the design – not necessary for production. § Time schedule § Can cycle 10+ modules at once § Cycles take ~12 hours M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 15 ¡

  16. Phase 1 Module Assembly § Modules are shipped to other sites for testing and integration § X-ray testing at UIC and KU § Further testing, grading, and integration at Fermilab § Packaging § Modules encased in heat-sealed, static dissipative polyethylene tubing with a silica gel desiccant § Sealed modules placed into foam- lined box for transport § Use FedEx ground to ship and track modules M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 16 ¡

  17. Phase 1 Module Assembly Staffing § Cost of operating a production site is dominated by staffing requirements § Technical staff needed for module production: § 1 senior engineer/technician § 2 wire bonder technicians (part time/hourly) § 2-4 undergraduates (hourly) § One postdoc (base funding) § One graduate student (base funding) § The robotic assembly process eliminates the need for multiple positions filled by highly skilled technical staff. § Unlike the model used for construction of the first FPix detector § Delays in delivery of parts led to frequent underutilization of staff M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 17 ¡

  18. Lessons Learned from Phase 1 Production § Examples of problems: § Sensor bias voltage in close proximity to ground vias o Add additional layer of polyimide to HDI § Lack of representative parts with which to qualify wire bonding parameters o Partly due to unanticipated variability in quality of HDI’s o Difficulties wire-bonding pre-production modules § Several critical tolerances needed for reliable assembly o End-holder assembly procedure impacts the ability to pick up the HDI in later steps o Over-thinned ROC’s change height of bare module on assembly fixture – necessary to add custom shims to correct o Minor changes in component placement required changes in tooling o Epoxy coverage under wire bond pads critical for reliable wire bonding § General issues: § The design did not cleanly factor into independent, unrelated steps. § Future module designs may benefit from conscious effort to partition critical steps … § Desireable, but this may not always be possible. M. ¡Jones ¡-­‑ ¡402.02.03.05 ¡ February ¡2-­‑3, ¡2016 ¡ 18 ¡

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend