3 body quantization condition in unitary formalism
play

3-BODY QUANTIZATION CONDITION IN UNITARY FORMALISM [Eur.Phys.J. A53 - PowerPoint PPT Presentation

3-BODY QUANTIZATION CONDITION IN UNITARY FORMALISM [Eur.Phys.J. A53 (2017) no.9] [Eur.Phys.J. A53 (2017) no.12] [Phys.Rev. D97 (2018) no.11] [arXiv:1807.04746] M a x i m M a i T h e G e o r g e W a s h i n g t o n U


  1. 3-BODY QUANTIZATION CONDITION IN UNITARY FORMALISM [Eur.Phys.J. A53 (2017) no.9] [Eur.Phys.J. A53 (2017) no.12] [Phys.Rev. D97 (2018) no.11] [arXiv:1807.04746] M a x i m M a i T h e G e o r g e W a s h i n g t o n U n i v e r s i t y

  2. ● Many unsolved questions of QCD involve 3-body channels ● Roper-puzzle & π channel π N ↔ π channels ↔ spectroscopy spin-exotics ● a ( 1 2 6 0 ) ρ / π σ π π 1 π π a 1 ● X etc.. ( 3 8 7 2 ) π π ρ σ π π 2 Ma x i m Ma i ( G WU )

  3. ● Many unsolved questions of QCD involve 3-body channels ● Roper-puzzle & π channel π N ↔ π channels ↔ spectroscopy spin-exotics ● a ( 1 2 6 0 ) ρ / π σ π π 1 π π a 1 ● X etc.. ( 3 8 7 2 ) π π ρ σ π π ● Best theoretical tool: Lattice QCD → some (preliminary) studies: ● π π N & a ( 1 2 6 0 ) Lang et al.(2014)Lang et al.(2016) 1 ● π ρ I = 2 [I=2,πρ] Woss et al. (2017) ● more is under way... 3 Ma x i m Ma i ( G WU )

  4. ● Many unsolved questions of QCD involve 3-body channels ● Roper-puzzle & π channel π N ↔ π channels ↔ spectroscopy spin-exotics ● a ( 1 2 6 0 ) ρ / π σ π π 1 π π a 1 ● X etc.. ( 3 8 7 2 ) π π ρ σ π π ● Best theoretical tool: Lattice QCD → some (preliminary) studies: ● π π N & a ( 1 2 6 0 ) Lang et al.(2014)Lang et al.(2016) 1 ● π ρ I = 2 [I=2,πρ] Woss et al. (2017) ● more is under way... ● However, Lattice spectrum is discretized → m spectrum a p p i n g t o i n fi n i t e v o l u m e this talk: Q U A N T I Z A T I O N C O N D I T I O N F O R 3 - B O D Y S Y S T E M S 4 Ma x i m Ma i ( G WU )

  5. 2-body case Lüscher(1986) ● o n e - t o - o n e m a p p i n g ● Various extensions: multi-channels, spin, ... Gottlieb,Rummukainen,Feng,Meißner, Li,Liu,Doring,Briceno,Rusetsky,Bernard… 5 Ma x i m Ma i ( G WU )

  6. 2-body case Lüscher(1986) ● o n e - t o - o n e m a p p i n g ● Various extensions: multi-channels, spin, ... Gottlieb,Rummukainen,Feng,Meißner, Li,Liu,Doring,Briceno,Rusetsky,Bernard… 3-body case ● p no o r e s u m a b l y n e - t o - o n e m a p p i n g → complex kinematics (8 variables) → sub-channel dynamics ● important theoretical developments and p numerical investigation i l o t Sharpe,Hansen,Briceno,Hammer,Rusetsky,Polejaeva,Griesshammer,Davoudi,Guo… MM/Doring(2017) Pang/Hammer/Rusetsky/Wu(2017) Hansen/Briceno/Sharpe(2018) Doring/Hammer/MM/Pang/Rusetsky/Wu (2018) ● First data driven study of the volume spectrum → ( π ) and ( π ) systems + + + + + π π π → comparison with Lattice QCD results MM/Doring (2018) > this talk < 6 Ma x i m Ma i ( G WU )

  7. UNITARY ISOBAR INF.-VOL. AMPLITUDE Eur.Phys.J. A53 MM et al. (2017) 1) T is a sum of a dis/connected parts 7 Ma x i m Ma i ( G WU )

  8. UNITARY ISOBAR INF.-VOL. AMPLITUDE Eur.Phys.J. A53 MM et al. (2017) 1) T is a sum of a dis/connected parts 2) Disconnected part = spectator + tower of “ i ” s o b a r s ➢ f u n c t i o n s w i t h c o r r e c t r i g h t - h a n d - s i n g u l a r i t i e s f o r e a c h Q N τ ( M ) i n v ➢ c o u p l i n g t o a s y m p t o t i c s t a t e s : c u t - f r e e - f u n c t i o n v ( q , p ) 8 Ma x i m Ma i ( G WU )

  9. UNITARY ISOBAR INF.-VOL. AMPLITUDE Eur.Phys.J. A53 MM et al. (2017) 1) T is a sum of a dis/connected parts 2) Disconnected part = spectator + tower of “ i ” s o b a r s ➢ f u n c t i o n s w i t h c o r r e c t r i g h t - h a n d - s i n g u l a r i t i e s f o r e a c h Q N τ ( M ) i n v ➢ c o u p l i n g t o a s y m p t o t i c s t a t e s : c u t - f r e e - f u n c t i o n v ( q , p ) 3) Connected part = general 4d BSE-like equation w.r.t kernel B ( p , q ; s ) 9 Ma x i m Ma i ( G WU )

  10. UNITARY ISOBAR INF.-VOL. AMPLITUDE Eur.Phys.J. A53 MM et al. (2017) 1) T is a sum of a dis/connected parts 2) Disconnected part = spectator + tower of “ i ” s o b a r s ➢ f u n c t i o n s w i t h c o r r e c t r i g h t - h a n d - s i n g u l a r i t i e s f o r e a c h Q N τ ( M ) i n v ➢ c o u p l i n g t o a s y m p t o t i c s t a t e s : c u t - f r e e - f u n c t i o n v ( q , p ) 3) Connected part = general 4d BSE-like equation w.r.t kernel B ( p , q ; s ) 4) 2- and 3-body unitarity constrains B , τ → relativistic 3d integral-equation v C B = v → useful for phenomenological applications v v + + +... - 1 τ = → unknowns: v , C , m 1 / m 0 0 10 Ma x i m Ma i ( G WU )

  11. 3-BODY QUANTIZATION CONDITION Eur.Phys.J. A53 MM/Doring(2017) ● Power-law fjnite-volume efgects ↔ on-shell confjgurations in T ↔ I ↔ Unitarity is crucial m T ● Replace integrals by sums: { E * | T - 1 ( E * ) = 0 } = { E n . E i g e n v a l u e s i n a b o x } ⚠ B is NOT regular → projection to irreps essential some useful techniques: Doring/Hammer/MM/… (2018) 11 Ma x i m Ma i ( G WU )

  12. 3-BODY QUANTIZATION CONDITION Eur.Phys.J. A53 MM/Doring(2017) ● Power-law fjnite-volume efgects ↔ on-shell confjgurations in T ↔ I ↔ Unitarity is crucial m T ● Replace integrals by sums: { E * | T - 1 ( E * ) = 0 } = { E n . E i g e n v a l u e s i n a b o x } ⚠ B is NOT regular → projection to irreps essential some useful techniques: Doring/Hammer/MM/… (2018) ➢ Final result in terms of shells s (/) and basis vector index u (/) W – total energy ϑ – multiplicity L – lattice size E s – 1p. energy 12 Ma x i m Ma i ( G WU )

  13. 3-BODY QUANTIZATION CONDITION Eur.Phys.J. A53 MM/Doring(2017) ● Power-law fjnite-volume efgects ↔ on-shell confjgurations in T ↔ I ↔ Unitarity is crucial m T ● Replace integrals by sums: { E * | T - 1 ( E * ) = 0 } = { E n . E i g e n v a l u e s i n a b o x } ⚠ B is NOT regular → projection to irreps essential some useful techniques: Doring/Hammer/MM/… (2018) ➢ Final result in terms of shells s (/) and basis vector index u (/) W – total energy ϑ – multiplicity L – lattice size E s – 1p. energy ● Possible work-fmow: 1)Fix & to 2-body channel (Lattice or Exp. data) + + +... v = - 1 τ = in to 3-body data (Lattice or Exp. data) 2)Fix C C B = 13 Ma x i m Ma i ( G WU )

  14. PHYSICAL APPLICATION arXiv:1807.04746 MM/Doring(2018) ● Interesting system: π + π + π + ➢ LatticeQCD results for ground level available for π + π + π + π + π + & Detmold et al.(2008) ➢ Repulsive channel → Q : d o e s t h e “ i s o b a r ” p i c t u r e h o l d ? ➢ L → B = 2 . 5 f m , m = 2 9 1 / 3 5 2 / 4 9 1 / 5 9 1 M e V o n u s Q : c h i r a l e x t r a p o l a t i o n i n 3 b o d y s y s t e m ? π 14 Ma x i m Ma i ( G WU )

  15. PHYSICAL APPLICATION arXiv:1807.04746 MM/Doring(2018) ● Interesting system: π + π + π + ➢ LatticeQCD results for ground level available for π + π + π + π + π + & Detmold et al.(2008) ➢ Repulsive channel → Q : d o e s t h e “ i s o b a r ” p i c t u r e h o l d ? ➢ L → B = 2 . 5 f m , m = 2 9 1 / 3 5 2 / 4 9 1 / 5 9 1 M e V o n u s Q : c h i r a l e x t r a p o l a t i o n i n 3 b o d y s y s t e m ? π I. 2-body subchannel: ➢ one-channel problem: π -system in S-wave, I=2 π ➢ 2-body amplitude consistent with 3-body one 15 Ma x i m Ma i ( G WU )

  16. PHYSICAL APPLICATION arXiv:1807.04746 MM/Doring(2018) ● Interesting system: π + π + π + ➢ LatticeQCD results for ground level available for π + π + π + π + π + & Detmold et al.(2008) ➢ Repulsive channel → Q : d o e s t h e “ i s o b a r ” p i c t u r e h o l d ? ➢ L → B = 2 . 5 f m , m = 2 9 1 / 3 5 2 / 4 9 1 / 5 9 1 M e V o n u s Q : c h i r a l e x t r a p o l a t i o n i n 3 b o d y s y s t e m ? π I. 2-body subchannel: ➢ one-channel problem: π -system in S-wave, I=2 π ➢ 2-body amplitude consistent with 3-body one 0 1) Fix λ to exp. data , M 0 -20 ☹ incoorrect m behavior! π -40 δ [°] -60 ChPT @ NLO K-mat @ LO -80 IAM Isobar: λ=const. -100 Isobar: IAM 400 600 800 1000 σ [MeV] 16 Ma x i m Ma i ( G WU )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend