2d ising model near critical scaling limit and
play

2D Ising Model: Near-Critical Scaling Limit and Magnetization - PowerPoint PPT Presentation

2D Ising Model: Near-Critical Scaling Limit and Magnetization Critical Exponent Charles M. Newman Courant Institute of Mathematical Sciences newman @ courant.nyu.edu Based on joint work with Federico Camia and Christophe Garban. Ising


  1. 2D Ising Model: Near-Critical Scaling Limit and Magnetization Critical Exponent ∗ Charles M. Newman Courant Institute of Mathematical Sciences newman @ courant.nyu.edu ∗ Based on joint work with Federico Camia and Christophe Garban.

  2. Ising Model on Z 2 S x = +1 or −1 �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� Probability ∝ exp ( β � { x,y } S x S y + h � x S x ) Spins: S x , S y = ± 1 Edges: e = { x, y } ( || x − y || = 1) Continuum scaling limit: replace Z 2 by a Z 2 and let a → 0. 1

  3. Ising Model in a Finite Domain 1 P β,h e − β E L ( S )+ h M L ( S ) L ( S ) := Z L,β,h Λ L := [ − L, L ] 2 ∩ Z 2  domain        E L ( S ) := − � interaction energy  { x,y } S x S y     M L ( S ) := � x ∈ Λ L S x total magnetization in Λ L          S e − β E L ( S )+ h M L ( S )  Z L,β,h := � partition function   2

  4. h = 0 Case: The Three Regimes Evidence of a phase transition. 3

  5. √ The Critical Point : β = β c = 1 2 log(1 + 2) 4

  6. Thermodynamic Limit h > 0 or β ≤ β c ⇒ P β,h has a unique infinite volume limit as L L → ∞ : L →∞ P β,h → P β,h − L �·� β,h denotes expectation with respect to P β,h 5

  7. The Magnetization Exponent (F. Camia, C. Garban, C.M.N.; arXiv:1205.6612) Theorem. Consider the Ising model on Z 2 at β c with a positive external magnetic field h > 0, then ∗ 1 15 . � S 0 � β c ,h ≍ h ∗ f ( a ) ≍ g ( a ) as a ց 0 means that f ( a ) /g ( a ) is bounded away from 0 and ∞ . 6

  8. Critical Exponents  C ( T ) ∼ | T − T c | − α Heat capacity:        M ( T ) ∼ | T − T c | b  Order parameter:     χ ( T ) ∼ | T − T c | − γ Susceptibility:          M ( h ) ∼ h 1 /δ  Equation of state ( T = T c ) :   7

  9. 2D Ising Critical Exponents Onsager’s solution shows that • susceptibility has logarithmic divergence ⇒ α = 0 • b = 1 / 8 (Yang) Scaling theory predicts • correlation length at T c : ξ ( h ) ∼ h − 8 / 15 8

  10. Scaling Laws  Rushbrooke: α + 2 b + γ = 2   Widom: γ = b ( δ − 1)   ⇓ δ = 2 − α − b 2D Ising = 15 b 9

  11. Proof of the Exponent Theorem Lower bound: Use Ising ghost spin representation + standard percolation arguments; tools: FKG + RSW for FK percolation. Upper bound: Combine GHS inequality with first and second moment bounds for the magnetization; tools: GHS + FKG + RSW for FK percolation. RSW for Ising-FK proved by Duminil-Copin, Hongler, Nolin (2011). 10

  12. GHS Inequality Theorem [Griffith, Hurst, Sherman, 1970]. Let �·� denote expectation with respect to P β,h ( h ≥ 0). Then, for any vertices L x, y, z ∈ Λ L , � � � S x S y S z �− � S x � � S y S z � + � S y � � S x S z � + � S z � � S x S y � +2 � S x �� S y �� S z � ≤ 0 . Corollary. The GHS inequality implies that ∂ 3 h log( Z L,β,h ) ≤ 0 . 11

  13. Magnetization 1 1 � S 0 � β c ,h = | Λ L |� M L � β c ,h ≤ | Λ L |� M L � β c ,h, + (+ b.c. on Λ L ) ∂ � M L � β c ,h, + = � M L e hM L � β c , 0 , + ∂h � e hM L � β c , 0 , + = � e hM L � β c , 0 , + � e hM L � β c , 0 , + 12

  14. Consequences of GHS �� � ∂ 3 S e − β c E L ( S )+ hM L ( S ) GHS ⇒ ∂h 3 log ≤ 0 �� e − βcEL + hML � ∂ 3 ∂h 3 log ≤ 0 ⇔ � e − βcEL � ∂ ∂h � e hML � βc, 0 , + � ∂ 2 = ∂ 2 ⇔ ∂h 2 � M L � β c ,h, + ≤ 0 ∂h 2 � e hML � βc, 0 , + ∂h � e hML � βc, 0 , + ∂ Let F ( h ) ≡ F L ( h ) := = � M L � β c ,h, + , then � e hML � βc, 0 , + F (0) + h F ′ (0) F ( h ) ≤ � � M 2 L � β c , 0 , + − � M L � 2 � = � M L � β c , 0 , + + h β c , 0 , + 13

  15. Magnetization Bounds Theorem [T.T. Wu, 1966]. There exists an explicit constant c > 0 such that as n → ∞ ρ ( n ) := � S (0 , 0) S ( n,n ) � β c , 0 ∼ c n − 1 / 4 . Proposition [F. Camia, C. Garban, C.M.N.]. There is a universal constant C > 0 such that for L sufficiently large, one has (i) � M L � β c , 0 , + ≤ C L 2 ρ ( L ) 1 / 2 , L � β c , 0 , + ≤ C L 4 ρ ( L ). (ii) � M 2 14

  16. Upper Bound � S 0 � β c ,h ≤ 1 L 15 / 8 + h L 15 / 4 � /L 2 � L 2 � M L � β c ,h, + ≤ C (optimize in L = L ( h )) ⇔ (choose L ( h ) ≍ h − 8 / 15 ∼ ξ ( h )) 1 L ( h ) 2 L ( h ) 15 / 8 = O (1) L ( h ) − 1 / 8 � S 0 � β c ,h ≤ O (1) O (1) h 1 / 15 ≤ 15

  17. Scaling Limit : Z 2 replaced by a Z 2 ; a → 0 � � Spin Approach 1 : Boundaries of clusters as conformal loop FK ensembles in plane related to Schramm-Loewner Evolution ( SLE κ ) � � 3 with κ = (Schramm, Smirnov) 16 / 3 Approach 2 ( today ): Random (Euclidean) field, Φ a ( z ) = Θ a � S x δ x x ∈ a Z 2 16

  18. Heuristics for Magnetization Field β,h ≡ Cov β,h ( S x , S y ) ∼ e −|| x − y || /ξ ( β,h ) as || x − y || → ∞ � S x S y � T 1. β < β c fixed ( h = 0) with ξ ( β ) < ∞ : Φ 0 trivial (i.e., Gaussian white noise) by some CLT. 2. β = β c ( h = 0), ξ ( β c ) = ∞ : Φ 0 massless; 3. β = β ( a ) ↑ β c ( h = 0) or β = β c , h ( a ) ↓ 0 s. t. a ξ ( a ) → 1 /m ∈ (0 , ∞ ) as a → 0: “near-critical” Φ 0 is massive. 17

  19. Continuum Scaling Limits for the Magnetization ( h = 0 ) 1 a → 0 � High temperature: S x − → M ∼ Normal dist. � 1 /a 2 x ∈ square Critical temperature: classical CLT does not hold. 18

  20. Scaling Limit at β c and h = 0 In the scaling limit ( a → 0) one hopes that � a → 0 a 15 / 8 � [0 , 1] 2 Φ( z ) dz S x − → x ∈ square for some magnetization field Φ = Φ 0 . Φ should describe the fluctuations of the magnetization around its mean (= 0). However, Φ cannot be a function. 19

  21. Critical Magnetization Field (F. Camia, C. Garban, C.M.N.; arXiv:1205.6610) Φ a := a 15 / 8 � S x δ x x ∈ a Z 2 Critical scaling limit: β = β c , h = 0, a → 0 Φ a → random generalized function Φ 0 : massless field (power-law decay of correlations). The limiting magnetization field is not Gaussian: log P (Φ 0 ([0 , 1] 2 ) > x ) x →∞ − c x 16 ∼ 20

  22. Conformal Covariance (F. Camia, C. Garban, C.M.N.; arXiv:1205.6610) The magnetization field Φ = Φ 0 exists as a random generalized function and is conformally covariant: If f is a conformal map, − 1 / 8 Φ( z )” . “Φ( f ( z )) dist. � � � f ′ ( z ) = � � � E.g., for a scale transformation f ( z ) = αz ( α > 0), � [ − αL,αL ] Φ( z ) dz dist. � = α 15 / 8 [ − L,L ] Φ( z ) dz . 21

  23. h → 0 Near-Critical Field (F.C., C.G, C.M.N.; arXiv:1307.3926) ( Why? : Borthwick-Garibaldi, 2011; McCoy-Maillard, 2012) Near-critical (off-critical) scaling limit: β = β c , a → 0, h → 0, ha − 15 / 8 → λ ∈ (0 , ∞ ). Heuristics: choose h = λa 15 / 8 and note that ξ ( h ) = ξ ( λa 15 / 8 ) ∼ ( a 15 / 8 ) − 8 / 15 = 1 . Limit yields one-parameter ( λ ) family of fields [in progress: mas- sive; i.e., exponential decay of correlations]. R 2 Φ 0 ( z ) dz );” Heuristics: multiply zero-field measure by “exp( λ � exponential decay based on FK percolation props. of critical Φ 0 . 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend