23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
play

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 M - PDF document

M I Variational Methods and Optimization in Imaging Institut Henri Poincar e, Paris, February 48, 2019 A 1 2 3 4 5 6 Stable Models and Algorithms for 7 8 Backward Diffusion Evolutions 9 10 11 12 13 14 Joachim Weickert 15 16


  1. M I Variational Methods and Optimization in Imaging Institut Henri Poincar´ e, Paris, February 4–8, 2019 A 1 2 3 4 5 6 Stable Models and Algorithms for 7 8 Backward Diffusion Evolutions 9 10 11 12 13 14 Joachim Weickert 15 16 Mathematical Image Analysis Group 17 18 Saarland University, Saarbr¨ ucken, Germany 19 20 21 22 23 24 joint work with 25 26 Martin Welk (UMIT, Hall, Austria) 27 28 Leif Bergerhoff (Saarland University) 29 30 Marcelo C´ ardenas (Saarland University) 31 32 Guy Gilboa (Technion, Haifa, Israel) 33 34 35 36 37 38 partial funding: DFG Leibniz Award and ERC Advanced Grant INCOVID 39 40 41 M I Introduction (1) A 1 2 Introduction 3 4 5 6 � Forward diffusion equations blur or smooth images. 7 8 = ⇒ attempts to invert these evolutions for deblurring or sharpening images 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ↔ 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

  2. M I Introduction (2) A 1 2 Problems 3 4 5 6 � Backward diffusion is typically regarded as ill-posed: 7 8 • Solution does not exist for non-smooth initial data. 9 10 • If it exists, it is highly sensitive w.r.t. perturbations. 11 12 13 14 � Thus, many researchers refrain from using backward diffusion. 15 16 17 18 19 20 Goals 21 22 23 24 � show how these problems can be 25 26 • handled by sophisticated numerics 27 28 29 30 • or circumvented by smart modelling 31 32 � demonstate these principles with two prototypical applications: 33 34 35 36 • advanced numerics for the FAB diffusion of Gilboa et al. 2002 37 38 • novel convex model for backward diffusion (Bergerhoff et al. 2018) 39 40 41 M I Outline A 1 2 Outline 3 4 5 6 � FAB Diffusion 7 8 • Continuous Model 9 10 11 12 • Explicit Scheme 13 14 • Efficient Numerics 15 16 • Experiments 17 18 19 20 � Backward Diffusion with Convex Energy 21 22 • Model and Theory 23 24 25 26 • Numerical Algorithm 27 28 • Experiment 29 30 31 32 � Conclusions 33 34 35 36 37 38 39 40 41

  3. M I Outline A 1 2 Outline 3 4 5 6 � FAB Diffusion 7 8 9 10 • Continuous Model 11 12 • Explicit Scheme 13 14 • Efficient Numerics 15 16 • Experiments 17 18 19 20 � Backward Diffusion with Convex Energy 21 22 • Model and Theory 23 24 25 26 • Numerical Algorithm 27 28 • Experiment 29 30 31 32 � Conclusions 33 34 35 36 37 38 39 40 41 M I FAB Diffusion: Continuous Model (1) A 1 2 FAB Diffusion: Continuous Model 3 4 5 6 The Perona–Malik Filter (1990) 7 8 Consider open image domain Ω ⊂ R 2 and some bounded image f : Ω → R . 9 10 � 11 12 � Create family of filtered versions u ( x , t ) of f ( x ) as solution of 13 14 � � 15 16 g ( | ∇ u | 2 ) ∇ u ∂ t u = div on Ω × (0 , ∞ ) , 17 18 u ( x , 0) = f ( x ) on Ω , 19 20 n ⊤ ∇ u = 0 on ∂ Ω × (0 , ∞ ) , 21 22 23 24 where n denotes the outer normal vector to the image boundary ∂ Ω . 25 26 diffusivity g is monotonically decreasing positive function of | ∇ u | 2 � 27 28 � smoothes within flat regions and enhances edges between them 29 30 31 32 � gradient descent of a possibly nonconvex but monotone energy 33 34 � 35 36 Ψ( | ∇ u | 2 ) d x E ( u ) = 37 38 Ω 39 40 where the penaliser (potential) Ψ( | ∇ u | 2 ) satisfies Ψ ′ ( | ∇ u | 2 ) = g ( | ∇ u | 2 ) . 41

  4. M I FAB Diffusion: Continuous Model (2) A 1 2 Forward-and-Backward (FAB) Diffusion 3 4 5 6 (Gilboa / Sochen / Zeevi 2002) 7 8 9 10 � goal: stronger sharpening than classical Perona-Malik filters 11 12 13 14 � equip Perona-Malik diffusion 15 16 � � g ( | ∇ u | 2 ) ∇ u 17 18 ∂ t u = div 19 20 21 22 with a diffusivity that takes positive and negative values. 23 24 � fairly mild assumptions in this talk: 25 26 27 28 g ∈ C 1 [0 , ∞ ) , g (0) = c 1 > 0 , g ( . ) ≥ − c 2 with c 1 > c 2 ≥ 0 . 29 30 31 32 33 34 corresponds to nonconvex and nonmonotone potential Ψ( | ∇ u | 2 ) � 35 36 37 38 39 40 41 M I FAB Diffusion: Continuous Model (3) A 1 2 How Unpleasant can this Become ? 3 4 5 6 Diffusivity g ( s 2 ) Diffusivity g ( s 2 ) Diffusivity g ( s 2 ) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Potential Ψ( s 2 ) Potential Ψ( s 2 ) Potential Ψ( s 2 ) 35 36 37 38 39 40 41

  5. M I FAB Diffusion: Continuous Model (4) A 1 2 Theoretical Results so Far 3 4 5 6 � cannot be covered by standard theory for diffusion filters (W. 1998) 7 8 � no continuous well-posedness theory 9 10 11 12 � Gilboa / Sochen / Zeevi (IEEE TIP 2002): 13 14 standard implementations violate extremum principle 15 16 � Gilboa / Sochen / Zeevi (JMIV 2004): 17 18 experimental stabilisation with a fidelity term and biharmonic regularisation 19 20 21 22 Can we establish a fully discrete theory ? 23 24 Does this lead to practical algorithms for images? 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 M I Outline A 1 2 Outline 3 4 5 6 � FAB Diffusion 7 8 • Continuous Model 9 10 11 12 • Explicit Scheme 13 14 • Efficient Numerics 15 16 • Experiments 17 18 19 20 � Backward Diffusion with Convex Energy 21 22 • Model and Theory 23 24 25 26 • Numerical Algorithm 27 28 • Experiment 29 30 31 32 � Conclusions 33 34 35 36 37 38 39 40 41

  6. M I FAB Diffusion: Explicit Scheme (1) A 1 2 FAB Diffusion: Explicit Scheme 3 4 5 6 Goal 7 8 � establish comprehensive theory for an explicit discretisation of FAB diffusion 9 10 11 12 Explicit Scheme 13 14 15 16 Explicit finite difference discretisation of diffusion equation 17 18 19 20 � � � � g ( | ∇ u | 2 ) ∂ x u g ( | ∇ u | 2 ) ∂ y u ∂ t u = ∂ x + ∂ y 21 22 23 24 in some inner pixel ( i, j ) at time level k yields the scheme 25 26 27 28 � � u k +1 − u k g k i +1 ,j + g k u k i +1 ,j − u k − g k i,j + g k u k i,j − u k 1 i,j i,j i,j i,j i − 1 ,j i − 1 ,j 29 30 = τ h 1 2 h 1 2 h 1 31 32 � � g k i,j +1 + g k u k i,j +1 − u k − g k i,j + g k u k i,j − u k 33 34 1 i,j i,j i,j − 1 i,j − 1 + 35 36 h 2 2 h 2 2 h 2 37 38 with grid sizes h 1 , h 2 and time step size τ . 39 40 41 M I FAB Diffusion: Explicit Scheme (2) A 1 2 Where Do Problems Arise ? 3 4 The standard discretisation of g ( | ∇ u | 2 ) is given by � 5 6 7 8 � � � 2 � � 2 � u k i +1 ,j − u k u k i,j +1 − u k 9 10 i − 1 ,j i,j − 1 g k i,j := g + . 2 h 1 2 h 2 11 12 � �� � 13 14 can be positive at extrema 15 16 17 18 � It can create negative diffusivities in extrema, which give rise to instabilities. 19 20 21 22 Is There a Remedy ? 23 24 � 25 26 A nonstandard discretisation produces a vanishing gradient in extrema: 27 28 � � � u k i +1 ,j − u k · u k i,j − u k 29 30 i,j i − 1 ,j g k i,j := max , 0 g h 1 h 1 31 32 � �� 33 34 u k i,j +1 − u k · u k i,j − u k i,j i,j − 1 + max , 0 . 35 36 h 2 h 2 37 38 39 40 � same quadratic consistency order as standard discretisation 41

  7. M I FAB Diffusion: Explicit Scheme (3) A 1 2 Two Technical Definitions 3 4 5 6 The grey values of f = ( f i ) ∈ R N are restricted to a finite interval of length � 7 8 9 10 f i − min R := max f i . i i 11 12 13 14 15 16 � Since g is continuous and c 1 > c 2 ≥ 0 , there exists a constant ω > 0 such that 17 18 g ( s 2 ) > c 2 19 20 ∀ s ∈ (0 , ωR ) . 21 22 23 24 25 26 c 1 27 28 c 2 29 30 31 32 0 33 34 | ∇ u | ωR 35 36 − c 2 37 38 39 40 41 M I FAB Diffusion: Explicit Scheme (4) A 1 2 Theorem [Theory for the Explicit FAB Scheme] 3 4 With the preceding assumptions and definitions, consider the explicit scheme for FAB 5 6 diffusion with nonstandard discretisation. 7 8 If the time step size τ satisfies 9 10 11 12 ω 2 h 4 1 h 4 13 14 2 τ ≤ � , � � � ω 2 h 2 h 2 1 + h 2 1 h 2 2 + h 2 1 + h 2 2 c 1 · · 15 16 2 2 17 18 then this scheme has the following properties: 19 20 21 22 � Well-Posedness 23 24 For every k ∈ N 0 , the solution u k +1 depends in a continuous way on perturbations 25 26 of the initial image f . 27 28 29 30 � Average Grey Value Invariance 31 32 33 34 N N 1 1 � � 35 36 u k j = f j =: µ ∀ k ∈ N 0 . N N 37 38 j =1 j =1 39 40 41

  8. M I FAB Diffusion: Explicit Scheme (5) A 1 2 � Maximum-Minimum Principle 3 4 5 6 f j ≤ u k min i ≤ max f j ∀ i, ∀ k ∈ N 0 . 7 8 j j 9 10 11 12 � Lyapunov Sequence 13 14 V k := max 15 16 u k u k j − min j j j 17 18 is a Lyapunov sequence: decreasing in k and bounded from below. 19 20 21 22 � Convergence to a Constant Steady State 23 24 25 26 k →∞ u k ∀ i. lim i = µ 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 M I Outline A 1 2 Outline 3 4 5 6 � FAB Diffusion 7 8 • Continuous Model 9 10 11 12 • Explicit Scheme 13 14 • Efficient Numerics 15 16 • Experiments 17 18 19 20 � Backward Diffusion with Convex Energy 21 22 • Model and Theory 23 24 25 26 • Numerical Algorithm 27 28 • Experiment 29 30 31 32 � Conclusions 33 34 35 36 37 38 39 40 41

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend