2 u f x u 0
play

2 u + f ( x, u ) = 0 where x R 2 , subject to u = 0 on f ( x, - PowerPoint PPT Presentation

M AXIMUM - NORM A POSTERIORI ESTIMATES ON ANISOTROPIC MESHES Natalia Kopteva University of Limerick, Ireland partially supported by DAAD (Study Visit Grant for Senior Academics) and Science Foundation Ireland P ROBLEM


  1. ✬ ✩ M AXIMUM - NORM A POSTERIORI ESTIMATES ON ANISOTROPIC MESHES Natalia Kopteva University of Limerick, Ireland partially supported by DAAD (Study Visit Grant for Senior Academics) and Science Foundation Ireland ✫ ✪

  2. P ROBLEM ADDRESSED 1 For singularly perturbed semilinear reaction-diffusion equations − ε 2 △ u + f ( x, u ) = 0 where x ∈ Ω ⊂ R 2 , subject to u = 0 on ∂ Ω f ( x, u ) − f ( x, v ) ≥ C f [ u − v ] whenever u ≥ v , ε 2 + C f � 1 we look for residual-type a posteriori error estimates � �� � � � � ≤ function max x � error mesh, comp.sol-n x ∈ ¯ Ω in the maximum norm on anisotropic meshes

  3. W HY ANISOTROPIC MESHES ?? 2 • Interpolation error bounds ⇒ anisotropic meshes are superior for layer solutions (a) Standard mesh. (b) Fine mesh. (c) Shape-regular refinement. (d) Anisotropic ref-nt. 1 1 1 1 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 1 1 1 1 0 0 0 0 0 0 0 0.5 0 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.8 0 0 0 0 1 1 1 1 �

  4. W HY ANISOTROPIC MESHES ?? 3 • anisotropic meshes are superior for layer solutions 0.6 3 1 0.4 2 0.8 0.2 1 0.6 0 0 0.4 −0.2 −1 0.2 0.5 −0.4 1 0 1 −0.6 0 0 0.5 0.5 −0.5 0.2 0 0.4 0.6 −0.5 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 0.8 −1 0 −1 1 (i) fine in layer regions ; coarse outside (ii) maximum mesh aspect ratio ∼ (layer width) − 1 ≫ 1 ✭✭✭✭✭✭✭✭ ✭ ❈ ❈ BUT theoretical difficulties within the FEM framework...

  5. O UTLINE 4 Part 0 Perceptions & expectations t.b. adjusted for anisotropic meshes Part 1 A posteriori estimates on anisotropic meshes — Problem addressed (more detail) — Existing literature — Mesh assumptions + preview of results Part 2 A bit of analysis : 3 technical issues addressed 1. Application of a Scaled Trace theorem when estimating the Jump Resid- ual (”long” edges cause problems...) 2. Shaper bounds for the Interior Residual (by identifying connected paths of anisotropic nodes...) 3. Quasi-interpolants (of Cl´ ement/Scott-Zhang type) are not readily avail- able for general anisotropic meshes [Apel, Chapt. III]... Numerics. Current+future work (3d; non-singularly perturbed case...) Part 3

  6. Part 0 P ERCEPTIONS & EXPECTATIONS ... 5 One Perception: the computed-solution error in the maximum norm is closely related to the corresponding interpolation error... • Quasi-uniform meshes, linear elements � u − u h � L ∞ (Ω) ≤ ln( C + ε/h ) inf χ ∈ S h � u − χ � L ∞ (Ω) – Schatz, Wahlbin, On the quasi-optimality in L ∞ of the ˚ H 1 -projection into −△ u = f , finite element spaces , Math. Comp. 1982: – Schatz, Wahlbin, On the finite element method for singularly perturbed − ε 2 △ u + au = f , reaction-diffusion problems ... , Math. Comp., 1983:

  7. Part 0 P ERCEPTIONS & EXPECTATIONS ... 5 One Perception: the computed-solution error in the maximum norm is closely related to the corresponding interpolation error... • Quasi-uniform meshes, linear elements � u − u h � L ∞ (Ω) ≤ ln( C + ε/h ) inf χ ∈ S h � u − χ � L ∞ (Ω) – Schatz, Wahlbin, On the quasi-optimality in L ∞ of the ˚ H 1 -projection into −△ u = f , finite element spaces , Math. Comp. 1982: – Schatz, Wahlbin, On the finite element method for singularly perturbed − ε 2 △ u + au = f , reaction-diffusion problems ... , Math. Comp., 1983: • Strongly-anisotropic triangulations: no such result – BUT this is frequently considered a reasonable heuristic conjecture t.b. used in the anisotropic mesh adaptation (Hessian-related metrics...) – IN FACT, this is NOT true (see next)

  8. P ERCEPTIONS & EXPECTATIONS ( CONTINUED ) 6 Example: − ε 2 △ u + u = 0 with u = e − x/ε exhibiting a sharp boundary layer Observation #1: Mass Lumping may be superior on anisotropic meshes Standard linear FEM Mass Lumping 1 10 -1 10 -1 ǫ =2 -8 ǫ =2 -8 ǫ =2 -16 ǫ =2 -16 10 -2 10 -2 ǫ =2 -24 ǫ =2 -24 ∼ N -2 ln 2 N ∼ N -2 ln 2 N 10 -3 10 -3 ∼ N -1 lnN ∼ N -1 lnN 10 -4 10 -4 10 -5 10 -5 0 0 1 10 -6 10 -6 10 1 10 2 10 3 10 1 10 2 10 3 1 10 -1 10 -1 ǫ =2 -8 ǫ =2 -16 10 -2 10 -2 ǫ =2 -24 ∼ N -2 ln 2 N 10 -3 10 -3 ∼ N -1 lnN ǫ =2 -8 10 -4 10 -4 ǫ =2 -16 ǫ =2 -24 10 -5 ∼ N -2 ln 2 N 10 -5 0 0 1 ∼ N -1 lnN 10 -6 10 -6 10 1 10 2 10 3 10 1 10 2 10 3 Here we use a Shishkin mesh: piecewise-uniform, DOF ≃ N 2 , mesh diameter ≃ N − 1 � u − u I � L ∞ (Ω) ≃ N − 2 ln 2 N ≃ DOF − 1 ln( DOF )

  9. P ERCEPTIONS & EXPECTATIONS ( CONTINUED ) 7 Same Example: − ε 2 △ u + u = 0 with u = e − x/ε exhibiting a sharp boundary layer Observation #2: Convergence Rates may depend on the mesh structure (even for mass lumping), NOT ONLY on the interpolation error Standard linear FEM Mass Lumping 1 10 -1 10 -1 ǫ =2 -8 ǫ =2 -8 ǫ =2 -16 ǫ =2 -16 10 -2 10 -2 ǫ =2 -24 ǫ =2 -24 N -2 N -2 10 -3 10 -3 N -1 N -1 10 -4 10 -4 10 -5 10 -5 0 0 1 10 -6 10 -6 10 1 10 2 10 3 10 1 10 2 10 3 1 10 -1 10 -1 10 -2 10 -2 10 -3 10 -3 ǫ =2 -8 ǫ =2 -8 10 -4 ǫ =2 -16 10 -4 ǫ =2 -16 ǫ =2 -24 ǫ =2 -24 N -2 N -2 10 -5 10 -5 0 0 1 N -1 ǫ N -1 10 -6 10 -6 10 1 10 2 10 3 10 1 10 2 10 3 � u − u I � L ∞ (Ω) ≃ N − 2 ≃ DOF − 1 Here we use a graded Bakhvalov mesh:

  10. W HAT GOES WRONG ?? 8 • A theoretical explanation of the above phenomena is given in: N.Kopteva, Linear finite elements may be only first-order pointwise accurate on anisotropic triangulations , Math. Comp., 2014.

  11. W HAT GOES WRONG ?? 8’ What happens in ˚ Ω := (0 , 2 ε ) × ( − H, H ) N 0 } 2 N 0 ω h := { x i = ε i i =0 × {− H, 0 , H } ?? with the tensor-product mesh ˚ H T 0 in Ω 0 ⊂ Ω : 0 T in Ω : −H ε ε 2 0 Mass lumping, U i := u h ( x i , 0) and U ± i := u h ( x i , ± H ) : h 2 [ − U i − 1 + 2 U i − U i +1 ] + ε 2 ε 2 H 2 [ − U − i + 2 U i − U + i ] + γ i U i = 0 γ N 0 = 2 with γ i = 1 for i � = N 0 , and 3 h 2 [ − U i − 1 + 2 U i − U i +1 ] + ε 2 ε 2 H 2 [ − U − i + 2 U i − U + ε ≪ H ⇒ i ] + γ i U i = 0

  12. I MPLICATIONS 9 Implications of the above example: • Theoretical: if one tries to prove ”standard” (almost) second-order a priori/a posteriori er- ror estimate in the maximum norm on a general anisotropic mesh, this may be impossible... • Anisotropic mesh adaptation (Hessian-related metrics...): One needs to be careful with the heuristic conjecture that the computed-solution error in the maximum norm is closely related to the corresponding interpolation error...

  13. P ERCEPTIONS & EXPECTATIONS ( CONTINUED ) 10 Non-singularly-perturbed EXAMPLE [Nochetto et al, Numer. Math., 2006]: −△ u + f ( u ) = 0 with f ( u ) ∼ − u − 3 and u = √ x 1 1 1 0 0 0 0 1 0 1 0 1 ǫ 10 -1 10 -1 10 -1 linearFE linearFE linearFE lumped-mass lumped-mass lumped-mass 10 -2 10 -2 10 -2 N -2 N -2 N -2 N -1.5 N -1.5 N -1.5 10 -3 10 -3 10 -3 10 -4 10 -4 10 -4 10 -5 10 -5 10 -5 10 -6 10 -6 10 -6 10 1 10 2 10 3 10 1 10 2 10 3 10 1 10 2 10 3 � u − u I � L ∞ (Ω) ≃ N − 2 ≃ DOF − 1 Graded mesh: { ( i/N ) 6 } N i =0 : Mesh transition parameter: ǫ = 0 . 1

  14. O UTLINE 4 Part 0 Perceptions & expectations t.b. adjusted for anisotropic meshes Part 1 A posteriori estimates on anisotropic meshes — Problem addressed (more detail) — Existing literature — Mesh assumptions + preview of results Part 2 A bit of analysis : 3 technical issues addressed 1. Application of a Scaled Trace theorem when estimating the Jump Resid- ual (”long” edges cause problems...) 2. Shaper bounds for the Interior Residual (by identifying connected paths of anisotropic nodes...) 3. Quasi-interpolants (of Cl´ ement/Scott-Zhang type) are not readily avail- able for general anisotropic meshes [Apel, Chapt. III]... Numerics. Current+future work (3d; non-singularly perturbed case...) Part 3

  15. P ART 1 P ROBLEM ADDRESSED ( DETAILS ) 11 For − ε 2 △ u + f ( x, u ) = 0 , we consider a standard finite element approximation ε 2 ( ∇ u h , ∇ v h ) + ( f I v h ∈ S h , f h := f ( · , u h ) , h , v h ) = 0 , where S h ⊂ H 1 0 (Ω) is a linear finite element space Ω is a polygonal, possibly non-Lipschitz, domain in R n , n = 2 : • 0 (Ω) ∩ C (¯ u ∈ H 1 ⇒ Ω) ; q ⊂ C (¯ Ω) for some l > 1 to be more precise, u ∈ W 2 l (Ω) ⊆ W 1 2 n and q > n . f u ( x, u ) ≥ C f ≥ 0 , • one-sided-Lipschitz-condition version of but f u ≤ ¯ C f NOT assumed

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend