2 nd year report
play

2 nd Year Report Stefan Grimm Structure Introduction Detectors - PowerPoint PPT Presentation

2 nd Year Report Stefan Grimm Structure Introduction Detectors Fisher-matrix formalism Analysis framework Segmented Fourier Transform Results: Stellar-mass BBHs Conclusion Introduction GW Detection Introduction


  1. 2 nd Year Report Stefan Grimm

  2. Structure ● Introduction ● Detectors ● Fisher-matrix formalism ● Analysis framework ● Segmented Fourier Transform ● Results: Stellar-mass BBHs ● Conclusion

  3. Introduction – GW Detection

  4. Introduction – Multiband approach ● Parameter estimation ● Multimessenger studies ● Testing GR A. Sesana, PRL 116, 231102 (2016)

  5. Introduction - Future Detectors Einstein Telescope (ET) Laser Interferometer Space Antenna (LISA)

  6. Detectors ● LIGO/Virgo detector network ● ET ● LISA ● B-DECIGO - geostationary orbit ● B-DECIGO - LISA-like orbit

  7. Fisher-matrix formalism s = h (θ)+ n ● Signal in detector ∞ a ( f ) b * ( f ) ( a ,b )= 4 ℜ ∫ df ● Noise-weighted inner product S n ( f ) 0 P ( s , θ)∝ exp (−( s − h (θ) ,s − h (θ))/ 2 ) ● Likelihood ● Expand around true source parameters F kj =(∂ k h (θ=θ 0 ) , ∂ j h (θ=θ 0 )) ● Fisher-matrix Δθ i = √ ( F − 1 ) ii ● Standard deviation SNR = √ ( h ,h ) ● SNR

  8. Analysis framework ( 0 ) H + H x 0 ● Metric perturbation − H + H x 0 0 0 2 r ( 5 M c t c − t ) 1 / 4 5 H + = c ( 1 + cos 2 (α)) cos (ϕ( t )+ϕ c ) 2 r ( 5 M c t c − t ) 1 / 4 5 H x = c 2cos 2 (α) sin (ϕ( t )+ϕ c ) ● Rotate into detector frame T H det = R H R T H det e 1 − e 2 T H det e 2 h ( t )= e 1 ● Project onto detector arm vectors

  9. Analysis framework ● Perform Fourier Transform ∂ i h ( t )→∂ i h ( f ) ● Compute Fisher matrix F kj =(∂ k h , ∂ j h ) ● Invert Fisher matrix Δθ i = √ ( F − 1 ) ii

  10. Segmented Fourier Transform Choose in each segment the time resolution corresponding to the highest frequency in the segment!

  11. Stellar-mass BBHs: detection capabilities SNR > 10 0 / 1000 13 / 1000 968 / 1000 938 / 1000 BBH population: mass spectrum is power-law with index − 1.6, 5 M solar < M BH < 60 M solar

  12. Parameter estimates

  13. Results ● B-DECIGO: geostationary orbit is preferable over heliocentric orbit ● Estimate of mass parameters benefits from multiband parameter estimation ● LISA: no good candidate for multiband parameter estimation of stellar-mass BBHs

  14. Outlook ● Investigate different detector designs ● Multi-messenger studies ● Perform studies involving large statistics

  15. Movement effects in B-DECIGO geostationary orbit heliocentric orbit

  16. Intermediate-mass BBHs: detection capabilities SNR > 10 241 / 1000 1000 / 1000 227 / 1000

  17. Neutron star binaries: detection capabilities SNR > 10 1 / 1000 492 / 1000 104 / 1000

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend