2 b c f c 0 e 1 2 a 0 0 a e e 1 1
play

2 B C f c ( 0 E ) = 1 + 2 A + ..... 0 0 A E E 1 - PDF document

Relative Flux, FD/ND , using Low- Technique: Part-I H. Duyang, Sanjib R. Mishra, & Xinchun Tian with contributions from Maxim Gonchar & Roberto Petti 01 Low- Idea


  1. Relative Flux, FD/ND , using Low- ν Technique: Part-I H. ¡Duyang, ¡ ¡Sanjib ¡R. ¡Mishra, ¡& ¡Xinchun ¡Tian ¡ with ¡contributions ¡from ¡ ¡ Maxim Gonchar & Roberto Petti 01

  2. Low- ν Idea ¡ ➾ SRM, Wold.Sci. 84(1990), Ed.Geesman 3 Determination of Relative Neutrino Flux The dynamics of neutrino-nucleon scattering implies that the number of events in a given energy bin with E had < ν 0 is proportional to the neutrino (antineutrino) flux in that energy bin up to corrections O ( ν 0 /E ν ) and O ( ν 0 /E ν ) 2 . The method follows from the general expression of the ν -nucleon di ff erential cross section. By invoking the assumptions of locality, Lorentz invariance, CP-invariance, and the V-A current structure of the lepton vertex, the expression of the di ff erential cross section is: d σ ν ( ν ) dxdy = G 2 + y 2 F ME � (1 − y − Mxy 1 − y � � � 2 E ) F ν ( ν ) 2 2 xF ν ( ν ) xF ν ( ν ) ± y (2) 2 1 3 2 π The symbols have their usual meanings; the structure functions F i are functions of x and Q 2 . It should be noted that the above expression is independent of the specifics of nucleon composition; in particular no assumption about quark/partons as nucleon constituents need be invoked. Using ν = E ν × y , and integrating the ν -N di ff erential cross section with respect to x (from 0 to 1) and ν (from 0 to ν 0 ), we get: � 1 � ν 0 d σ N ( ν < ν 0 ) = Φ ( E ν ) . dxd ν dxd ν 0 0 0 / 2 E ν ) F 2 + ν 3 F 1 ± ( ν 2 − ν 3 � � 0 0 0 ( ν 0 − ν 2 ) F 3 = C . Φ ( E ν ) . 6 E 2 6 E 2 2 E ν ν ν (3) � 1 � ν 0 where F i = 0 F i ( x ) dxd ν , N ( ν < ν 0 ) is the number of events in a given energy bin (E ν ) 0 with hadronic energy less than ν 0 , C is a constant, and the term Mxy 2 E ν has been suppressed for simplicity. It should be noted that the integrals F i contain the appropriate factors of x in the integrand for the structure functions xF 3 and 2 xF 1 . By rearranging terms as coe ffi cients of ( ν 0 /E ν ) and its powers we arrive at the more amenable form: ( F 2 ∓ F 3 ) + ν 2 � � F 2 − ν 0 0 N ( ν < ν 0 ) = C . Φ ( E ν ) . ν 0 ( F 2 ∓ F 3 ) 6 E 2 2 E ν ν � � A + ( ν 0 ) B + ( ν 0 ) 2 C + O ( ν 0 ) 3 = C . Φ ( E ν ) . ν 0 E ν E ν E ν N( ν<ν 0 ) α φ(E ν ) up to ( ν 0 / E ), ( ν 0 / E ) 2 19 02

  3. ⇐ RELATIVE FLUX WITH LOW- ν METHOD ✦ Relative ν µ , ¯ ν µ flux vs. energy from low- ν 0 method: (S. R. Mishra, Wold. Sci. 84 (1990), Ed. Geesm N ( E ν , E Had < ν 0 ) = k Φ ( E ν ) f c ( ν 0 E ν ) the correction factor f c ( ν 0 /E ν ) → 1 for ν 0 → 0 : ➳ � 2 � � � B C f c ( ν 0 E ν ) = 1 + 2 A + ..... ν 0 ν 0 A − E ν E ν � 1 � 1 where A = G 2 0 F 2 ( x ) dx , B = − G 2 F M/ π F M/ π 0 ( F 2 ( x ) ∓ x F 3 ( x )) dx and � 1 C = B − G 2 0 F 2 ( x ) [(1 + 2 Mx/ ν ) / (1 + R ( x, Q 2 )) − Mx/ ν − 1] dx F M/ π ✦ In practice use MC to calculate the correction factor normalized at high E ν : σ ( E ν , E Had < ν 0 ) f c ( E ν ) = σ ( E ν →∞ , E Had < ν 0 ) where the denominator is evaluated at the highest energy accessible in the spectrum. = ⇒ Need precise muon energy scale and good resolution at low ν values = ⇒ Reliable flux predictions for E ν � 2 ν 0 → DUNE spectra require ν 0 ≃ 0 . 25 ÷ 0 . 50 GeV − etti 03

  4. correction ν 0 1.1 correction 1 0.9 0.8 neutrino 0.7 anti − neutrino 0.6 0.5 10 20 30 40 50 60 Enu Figure 1: ν 0 correction for ν 0 = 1.0 GeV as a function of E ν for ν µ and ν µ Empirical Parametrization of π + , K + , π − , and K − 5 * (B/A) , ¡ (C/A) ¡ ➾ ¡ Low-­‑ ν ¡Processes ¡ ¡ using the Low- ν Events in ND _ Our analysis entails an empirical prarametrization (EP) of the secondary π ± and K ± pro- Figure ¡of ¡Merit ¡for ¡ (B/A) : ¡ ¡ ν ¡~ ¡ -0.3 ; ¡ ¡ ν ¡~ ¡ -1.5 ( NOMAD spectrum) ¡ duction in 120 GeV p-NuMI target as a function of x F and p T using the relative flux determined by the low- ν events in the ND. The analysis should be contrasted with the * Error ¡on ¡ (B/A) ¡ ¡ ⇔ ¡Err. ¡in ¡Low-­‑ ν ¡Interactions ‘traditional’ method of using the low- ν events, as in CCFR/NuTEV and in the MINOS- ND: start with data CC events with E Had ≤ ν 0 correct for acceptance and smearing; apply the low- ν correction to obtain the relative ν -flux at ND. (The analysis of the in- clusive ν µ -cross section by Debdatta and Donna [2] essentially use this method.) The advantage of the EP analysis is as follows: • ND and FD Flux: The EP constraints of pions and kaons allows us to accurately predict the FD flux predicated on the ND low- ν events. • The ν e and ν e Flux: Constraining the normalization and energy dependence of π + , and, hence, of µ + , and K + allows us to predict the ν e / ν µ ratio at the ND and the FD [3]. 04 19

  5. MINOS Coll., PRD 81 (2010) 072002 (MINOS)( (MINOS)( A. Bodek et al., EPJC 72 (2012) 1973 ) 4.4 ) 2 4.4 2 cm GENIE MC <0.25 ν cm GENIE MC ν <0.25 4.2 4.2 4 4 -38 -38 3.8 GENIE MC <0.5 GENIE MC <0.5 ν ν 3.8 (10 (10 3.6 3.6 3.4 GENIE MC <1.0 3.4 ν GENIE MC ν <1.0 σ σ 3.2 3.2 3 3 GENIE MC <2.0 ν GENIE MC <2.0 2.8 ν 2.8 2.6 2.6 GENIE MC ν <5.0 2.4 GENIE MC <5.0 ν 2.4 2.2 2.2 MINOS ν <1 2 2 MINOS ν <1 1.8 1.8 MINOS ν <2 1.6 1.6 1.4 MINOS <2 ν 1.4 1.2 MINOS <5 ν 1.2 1 1 MINOS <5 ν 0.8 0.8 0.6 ⟸ 0.6 0.4 0.4 0.2 0.2 0 0 -2 -1 -1 5 10 10 2 10 2 3 4 5 6 78 10 20 30 40 -1 × × 1 2 × 10 1 2 3 4 5 6 7 8 910 20 30 40 50 E (GeV) E (GeV) Fraction of Events with Cut for Neutrino on Carbon * ( B/A ) , ¡ ( C/A ) ¡ ➾ ¡ Low-­‑ ν ¡Processes ¡ ¡ _ Figure ¡of ¡Merit ¡for ¡ ( B/A ) : ¡ ¡ ν ¡ ~ ¡ -0.3 ; ¡ ¡ ν ¡~ ¡ -1.5 ( for ¡NOMAD ) ¡ *Error ¡on ¡ ( B/A ) ¡ ⇔ ¡Err. ¡in ¡Low-­‑ ν ¡Interactions 05

  6. ✦ Low- ν technique only provides RELATIVE BIN-TO-BIN flux as a function of E ν , NOT ABSOLUTE flux = ⇒ Implicit constraint of fixed flux integral (introduces correlation among bins) ✦ Freedom to chose the energy range used to impose the normalization constraint = ⇒ E.g. E ν bins with higher statistics / smaller systematic uncertainties ✦ The correction factor f c ( E ν ) can be a ff ected by model uncertainties on (anti)neutrino-nucleus cross-sections (QE, RES, DIS) ● Typically keep f c ( E ν ) at the level of few percent or below (small ν 0 /E ν ) to minimize model uncertainties (correction to correction); ● For ν 0 = 0 . 25 ÷ 0 . 50 GeV samples almost entirely QE ( 99 ÷ 75% ) and RES; ● Low- ν sensitive only to model uncertainties modifying the total cross-section vs. E ν (integrated over Q 2 and other kinematic variebles) = ⇒ Shape of σ ( E ν ) intrinsically more stable 06

  7. High-­‑Resolu,on ¡Fine ¡Grain ¡Tracker: ¡ ¡ Reference ¡ND ¡of ¡DUNE ¡ ECAL ¡ μ ¡ Detector ¡ Dipole-­‑B ν Transition ¡Radiation ➳ e +/-­‑ ¡ID ¡⇒ γ ¡ ¡ ¡ ¡ ¡ STT ¡& ¡ dE/dx ¡ ➳ Proton, ¡π +/-­‑ , ¡K +/-­‑ ¡ ¡ Ar-­‑Target Magnet/Muon ¡Detector ➳ μ +/- e +/- ( ⇒ Absolute ¡Flux ¡measurement ) 1X0 ¡~ ¡600 ¡cm ¡/ ¡ 1 λ ¡~ ¡1200 ¡cm ☙ ~ 3.5m ¡x ¡3.5m ¡x ¡6.5m ¡STT ¡(ρ≃0.1gm/cm 3 ) ¡ ☙ 4 π -­‑ECAL ¡in ¡a ¡Dipole-­‑B-­‑Field ¡(0.4T) ☙ 4 π -­‑μ-­‑Detector ¡(RPC) ¡in ¡Dipole ¡and ¡ Downstream ☙ Pressurized ¡Ar-­‑target ¡(≃x5 ¡FD-­‑Stat) ➾ LAr- FD 07

  8. Composition ¡of ¡the ¡Neutrino ¡Beam ¡ (1) ν μ ¡ ¡ ⇒ π + ⊕ K + ➾ ID’d by 𝜈 - _ (2) ν μ ¡ ¡ ⇒ π - ⊕ K - ⊕ 𝜈 + ( ⇐ π + ) ➾ ID’d by 𝜈 + (3) ν e ¡ ¡ ⇒ K + ⊕ 𝜈 + ( ⇐ π + ) ⊕ K 0 L ➾ ID’d by e - _ (4) ν e ¡ ¡ ⇒ K 0 L ⊕ K - ⊕ 𝜈 - ( ⇐ π - ) ⊕ Charm ➾ ID’d by e + Need: Accurate identification & measurement of each specie: ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ Required ¡for ¡the ¡need ¡redundancy! ¡ ¡ 08

  9. NOMAD ¡Experience ¡ _ ν μ ¡ ¡ ⇒ π + ⊕ K + ν μ ¡ ¡ ⇒ π - ⊕ K - ⊕ 𝜈 + ( ⇐ π + ) 10 3 10 4 10 2 10 3 10 10 2 1 10 -1 10 100 200 300 100 200 300 E(GeV) E(GeV) _ ν e ¡ ¡ ⇒ K 0 L ⊕ K - ⊕ 𝜈 - ( ⇐ π - ) ν e ¡ ¡ ⇒ K + ⊕ 𝜈 + ( ⇐ π + ) 10 2 ⊕ Charm ⊕ K 0 L 10 10 1 1 -1 10 -2 10 -1 10 100 200 300 50 100 150 200 E(GeV) E(GeV) 09

  10. MINOS ¡Experience ¡ Events/GeV Data signal Total π 5 10 background K 0 K L µ 4 10 3 10 2 10 10 20 30 40 50 60 Evis(GeV) Example of Low- ν EP fit to the MINOS low energy (LE) data (J. Ling and S.R. Mishra) 10

  11. Salient Considerations in Low- ν Flux Analysis: ✴ Measurement and in situ calibration of Leptons: 𝜈 & e ✴ Calibration of ECAL: Response to π +/- , Proton, n, π 0 in a dedicated Test-beam ! ✴ Differential Cross-sections of Low- ν Processes: Measure ➳ QE, ¡ ¡Resonance, ¡& ¡DIS ¡ ✴ Theoretical Errors in estimation of fc(E) : ✴ Constraining Non-Prompt Background ✴ Empirical-Parametrization of π /K Diff-Xsec ✴ Constraints from external Hadro-Production Experiments ✴ Beam Transport Errors in MC: Affects the acceptance ✴ Experimental Errors 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend