19 th escampig granada spain 15 19 july 2008
play

19 th ESCAMPIG, Granada, Spain 15-19 July 2008 Aim of this work To - PowerPoint PPT Presentation

1 19 th ESCAMPIG, Granada, Spain 15-19 July 2008 Aim of this work To study the energy distributions of ions reaching the cathode in hollow cathode dc discharges of different gas precursors at low pressures, containing Ar, H 2 , N 2 , O 2


  1. 1 19 th ESCAMPIG, Granada, Spain 15-19 July 2008

  2. Aim of this work • To study the energy distributions of ions reaching the cathode in hollow cathode dc discharges of different gas precursors at low pressures, containing Ar, H 2 , N 2 , O 2 and/or CH 4 . • To get information about ion production in the glow and collision processes in the 2 sheath from the shapes of the different

  3. 3 EXPERIMENTAL SET-UP Hollow cathode dc discharge Cathode dimensions ~ 10 cm × 34 cm Low plasma pressure ~ 0.5 - 50 Pa Electron gun to ignite the plasma = Diagnostic Techniques • • Double Langmuir Double Langmuir Probe Probe -HV Electron Gun • • Quadrupole Mass Spectrometry Quadrupole Mass Spectrometry of Neutrals and Ions of Neutrals and Ions + Ion Energy Distributions + Ion Energy Distributions • • Visible Emission Spectroscopy Visible Emission Spectroscopy 3

  4. Ion Energy Distributions Hollow Cathode Ion Source Quadrupole Ion Energy Analizer SEM for neutrals Mass Analizer Negative Glow E ~ 0 V s PLASMA MONITOR Sheath: s ~ 1 cm , ∆ V ~ V Anode-Cath. ~ 300 V ⇒ • E = 0 ----------- in Negative Glow Ions diffuse without kinetic energy gain • ∆ V > 300 V --- in Cathode Sheath ⇒ Ions are acelerated towards the cathode and gain kinetic energy. Part of this energy can be lost in collisions with neutrals at high enough pressure (depending on each k(E i ) value) 4

  5. Ion Energy Distributions Hollow Cathode Quadrupole Ion Energy Analizer SEM Ion Source Mass Analizer Negative Glow E ~ 0 V s PLASMA MONITOR Sheath: s ~ 1 cm , ∆ V ~ V Anode-Cath. ~ 300 V V ac Double Langmuir Probe -3 ) 3 • T e ~ 1 - 10 eV depending on Pressure 10 (cm 2 E = 0 ⇒ T e instead of E/N for Modelling N e /10 1 10 H 2 , 150 mA • T gas < 350 K ( i.e. ~ 0.025 eV ) T e Maxwell (eV) 8 discharge 6 Plasma far from Thermal Equilibrium ! 4 2 1 10 P (H 2 ) (Pa) 5

  6. Ar plasmas 6 10 Low Pressure 0.7 Pa + 4 Ar Ion Intensity (cc/s) 5 10 Narrow peaks with E m ~ V AC Δ E ion = 1.2 eV Δ E FWHM / E m ~ 0.3% 4 10 2 ++ Ar + Ar 3 10 0 325 330 2 10 ++ Ar 100 200 300 (Ion Energy/q) (eV) Ion generation in the GLOW: Ar + e → Ar + + 2 e Ar + e → Ar ++ + 3 e Very low pressure ⇒ No collisions in the sheath between ions and neutrals 6

  7. Ar plasmas 6 10 Low Pressure 0.7 Pa + 4 Ar 5 Ion Intensity (cc/s) 10 Narrow peaks with E m ~ V AC Δ E ion = 1.2 eV Δ E FWHM / E m ~ 0.3% 4 10 2 ++ Ar + Ar 3 10 0 325 330 2 10 ++ Ar 100 200 300 Ion Energy (eV) 3 10 4 Pa Higher Pressure Ion Intensity (cc/s) An entirely different distribution ! + Ar 2 10 ++ Ar 1 10 100 200 Ion Energy (eV) 7

  8. Symmetric Charge Transfer Effect of collisions in the sheath Ar + + Ar → Ar + Ar + 6 10 6 6 10 10 0.7 Pa + 0.7 Pa 4 Ar 0.7 Pa + + Ion Intensity (cc/s) 5 4 4 Ar 10 Ar 5 Ion Intensity (cc/s) Ion Intensity (cc/s) 5 10 10 Δ E ion = 1.2 eV Δ E ion = 1.2 eV Δ E ion = 1.2 eV 4 10 4 4 10 2 10 2 2 ++ Ar ++ ++ Ar Ar Pullins & Dressler, + Ar 3 + + Ar 10 Ar 3 3 10 10 Z. Phys. Chemie (2000) 0 0 0 325 330 325 325 330 330 2 2 2 10 10 10 ++ Ar ++ ++ Ar Ar Model of Davis and Vanderslice 100 200 300 100 100 200 200 300 300 Ion Energy (eV) Ion Energy (eV) Ion Energy (eV) Phys. Rev. 131, 219 (1963) 3 3 3 10 10 10 ⎛ ⎞ ⎡ ⎤ − 1 1 ⎜ ⎟ ⎛ − ⎞ ⎛ − ⎞ ⎢ ⎥ E 2 2 dN E s E 4 Pa 4 Pa 4 Pa ⎜ ⎟ ⎜ ⎟ 0 = − ⎜ ⎟ s/ λ =1 1 exp 1 1 Ion Intensity (cc/s) Ion Intensity (cc/s) Ion Intensity (cc/s) ⎜ ⎟ ⎜ ⎟ ⎢ ⎥ λ ⎝ ⎠ ⎜ ⎝ ⎠ ⎟ N dE V V ⎢ ⎥ Model 0 0 0 ⎣ ⎦ ⎝ ⎠ + + Ar + Ar Ar 2 s/ λ =4 Relevant parameter: s/ λ (sheath collisions) 2 2 10 10 10 s/ λ =9 S = sheath width s/ λ =9 ++ ++ Ar Ar ++ Ar λ = ion mean free path ~ 1.4 mm s/ λ =1 S = 1.3 cm (at 4 Pa, with σ (Ar + ) ~ 4 · 10 -15 cm 2 ) 1 1 10 10 1 10 100 200 100 200 σ (Ar ++ ) ~ 7 · 10 -16 cm 2 ⇒ s/ λ (Ar ++ ) ~ 1.5 100 200 Ion Energy (eV) Ion Energy (eV) Ion Energy (eV) 8

  9. H 2 plasmas at low pressure Narrow peaks Ion Intensity (cc/s) H 2 , 2 Pa ( Δ E FWHM / E m < 1%) + H 3 4 10 H 2 + e → H 2+ + 2e - 3 + 10 H in the H + e → H + + 2e - + H 2 GLOW 2 10 + → H + + H 2 H + H 2 150 200 250 300 Ion Energy (eV) H generated by e - impact dissociation of H 2 Previous experiments based on optical emission spectroscopy ⇒ [ H ] / [ H 2 ] ~ 10% in these H 2 discharges. ( I Méndez , FJ Gordillo , VJ Herrero, I Tanarro & 2006, J. Phys. Chem. A ) 9

  10. H 2 plasmas Collision Cross Sections of H 2 + + H 2 A V Phelps (1990) Ion Intensity (cc/s) H 2 , 2 Pa + H 3 J. Phys. Chem. Ref. Data 4 10 + H 3 3 + 10 H + H 2 2 10 150 200 250 300 Ion Energy (eV) + generated H 3 generated efficiently efficiently by by H + 3 + + H 2 → H 3 + + H H 2 only at low E i ⇒ in in the the GLOW GLOW 10

  11. H 2 plasmas + + H 2 Collision Cross Sections of H 2 A V Phelps (1990) Ion Intensity (cc/s) H 2 , 2 Pa J. Phys. Chem. Ref. Data + H 3 4 10 + H 3 fast H 2 3 + 10 H + H 2 2 10 150 200 250 300 Ion Intensity (cc/s) + H 3 H 2 , 20 Pa 5 10 + H ⇐ Higher ⇐ Higher Pressure Pressure + H 2 x10 4 10 + lost H 2 lost of of energy energy by by symmetric symmetric H 2+ Model:s/ λ =13 charge transfer charge transfer: : 3 10 + + H 2 → H 2 (fast) + H 2 H 2 + 50 100 150 200 250 300 Ion Energy (eV) only at high E i ⇒ in the SHEATH. Important for modelling. σ ~ 9·10 -20 m 2 ⇒ s ~ 2 cm at 4 Pa 11

  12. High Energy Region H 2 plasmas 4 4 E m Ion Intensity (cc/s) x 10 + H 3 H 2 , 2 Pa 3 Ion Intensity (cc/s) H 2 , 2 Pa + H 3 4 10 Δ E ion = 2 eV 2 + (x20) H 3 + 10 H 1 + H 2 8 eV 2 0 10 280 290 150 200 250 300 5 Ion Intensity (cc/s) x 10 E m 3 Ion Intensity (cc/s) + H 3 H 2 , 20 Pa 5 H 2 , 20 Pa 10 + + H 3 H 2 + H 2 x10 4 10 + (x3) H 1 3 10 Model:s/ λ =13 0 50 100 150 200 250 300 Ion Energy (eV) 240 280 320 Ion Energy (eV) 12

  13. 4 4 E m Ion Intensity (cc/s) x 10 Observations on + H 2 , 2 Pa H 3 H + Energies 3 Δ E ion = 2 eV 2 + (x20) H Narrow peak at E m + 1 Secondary peak at: E ~ E m + 8 eV 8 eV 0 280 290 5 Ion Intensity (cc/s) x 10 E m 3 H 2 , 20 Pa The secondary peak dissapears + H 3 2 and a broad shoulder ( E < E m ) + (x3) H appears. 1 WHY? 0 240 280 320 Ion Energy (eV) 13

  14. Dissociative H 2 ionization 1 st : Low H 2 Pressure H 2 + e - → H + (fast) + H (fast) + 2e - 4 4 Ion Intensity (cc/s) x 10 + H 3 H 2 , 2 Pa 3 Δ E ion = 2 eV 2 + (x20) H 1 8 eV ~16 eV ~8 eV 0 280 290 Ion Energy (eV) Potential-Energy Diagram for Ground H 2 and Predissociative States + and H 2 of H 2 ++ In the dc Discharge, fast H + are Experiments with electron beams, generated in the GLOW by e - impact consistent with the Frack-Condon rule and acelerated towards the Cathode 14 G H Dunn & L J Kieffer, Phys. Rev. (1963) with their EXCESS OF ENERGY

  15. T e decreases with increasing pressure 4 4 I Méndez, VJ Herrero, 10 Ion Intensity (cc/s) x 10 I Tanarro & FJ Gordillo T e Maxwell (eV) + H 3 H 2 , 2 Pa J. Phys. Chem. (2006) 3 8 I Méndez, VJ Herrero,I Tanarro & FJ Gordillo 2 Pa Δ E ion = 2 eV 20 Pa 2 J. Phys. Chem. (2006) 6 + (x20) H Rate constant for fast H + generation 1 4 8 eV decreases with T e much more 0 2 280 290 than for the other H + formation proceses. 1 10 Ion Energy (eV) P (H 2 ) (Pa) 2 nd : Higher H 2 Pressure -8 10 80 90 3 5 + + +H 2 Ion Intensity (cc/s) x 10 H 2 +H H -9 10 + H 2 , 20 Pa H 3 + +2e H+e H k ( cm 3 s -1 ) 2 -10 10 + +H+2e H 2 +e H -11 10 1 + x 3 H Rate constants, -12 10 + formation for H 0 ? -13 10 240 280 320 1 10 T e (eV) Ion Energy (eV) Dissapearance of the secondary H + peak at E>E m 15

  16. Collision Cross Sections for H 3 + + H 2 reactions + very “stable” in H 2 media) (very small in general ⇒ H 3 H + “may be” generated in the SHEATH and accelerated towards the Cathode A V Phelps (1990) J. Phys. Chem. Ref. Data (small extrapolated cross sections) + + H 2 → H + + 2 H 2 H 3 Higher H 2 Pressure 80 90 3 5 Ion Intensity (cc/s) x 10 + H 2 , 20 Pa H 3 2 1 + x 3 H 0 240 280 320 Important for modelling Ion Energy (eV) Apearance of the broad shoulder at E < E m 16

  17. H 2 +Ar plasmas + , ArH + and Ar ++ : H 3 7 10 Narrow peaks with no wings ⇒ Ion Intensity (cc/s) H 2 +Ar (7%), 2 Pa + H No collisions in the Sheath 3 6 10 ArH + Formation in the GLOW + ArH 5 10 + → ArH + + H ++ Ar Ar + H 2 Ar + + H 2 → ArH + + H 4 10 6 10 Ion Intensity (cc/s) + → ArH + + H 2 Ar + H 3 + H 2 5 10 High rate coefficients at low impact energies + H 4 10 + , H + and Ar + : + H 2 Ar 3 Broadening at low energies ⇒ 10 300 320 340 Charge transfer and inelastic collisions (Ion Energy/q) (eV) H + with energy excess: + dissociative ionization H 2 See more in Poster 3-77 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend