1 introduction
play

1. Introduction and Reciprocity Non Commutative (NC) spaces are - PDF document

2015/11/14 Noncommutative Instantons 1. Introduction and Reciprocity Non Commutative (NC) spaces are defined by noncommutativity of spatial coordinates: Masashi Hamanaka [ , ] x x i : NC


  1. 2015/11/14 Noncommutative Instantons 1. Introduction and Reciprocity • Non ‐ Commutative (NC) spaces are defined by noncommutativity of spatial coordinates: Masashi Hamanaka      [ , ]   x x i : NC parameter (real const.) (Nagoya U, Japan)  [ , ]  (cf. CCR in QM : ) q p i YI TP Workshop QFT2015 November 10th 2015 (  ``space ‐ space uncertainty relation’’  )  Resolution of singularity ~ ・ We give a proof of one ‐ to ‐ one correspondence between moduli space of instantons and moduli space of ADHM (  new physical objects) Com. space NC Space data in noncommutative spaces. ・ MH&Toshio Nakatsu(Setsunan), NC Instantons and Reciprocity, Ex) Resolution of small instanton singularity to appear, [cf. arXiv:1311.5227] (  U(1) instantons) ・ MH&TN, work in progress. [Nekrasov-Schwarz] ASDYM eq. in 4 ‐ dim. with G=U(N) NC ASDYM eq. with G=U(N) in Moyal • ASDYM eq. (real rep.)    • NC ASDYM eq. (real rep.) , 1 , 2 , 3 , 4       , , F F       F F :          12 34 F A A A A A A 01 23 ( : ) F A A A A A A                         , F F Field strength F F 13 42 , 02 31   1  0  O      1     0 F F      F F : 14 23 . A Gauge field  0  2  03 12   O    2 0 (N × N anti-Hermitian)   (Spell:All products are Moyal products.)     Under the spell, ( 0 , 0 ( . .)) F F F cpx rep     z z z z z z 1 1 2 2 1 2 i       ( ) ( ) : ( ) exp   ( ) we can calculate : f x g x f x g x    2  • There are two descripitions of NC extension:          ( ) ( ) ( ) ( ) ( 2 ) ‐ Moyal ‐ product formalism (deformation quantization) f x g x i f x g x O   2 Note: Coordinates and functions themselves ‐ Operator formalism (Connes’ theory) are c-number-valued usual ones i i                 [ , ] : ( ) x x x x x x  2 2    i G=U(N) NC ASDYM in operator formalism 2. Atiyah ‐ Drinfeld ‐ Hitchin ‐ Manin Construction based on duality for the instanton moduli space • Take coordinates as operators (in 2dim): ˆ               [ ˆ , ˆ ] complex [ ˆ , ] 2 rescale [ ˆ , ˆ ] 1 4dim. ASDYang-Mills eq. ADHM eq. (≒0dim. ASDYM) x y i z z a a (Difficult) (Easy) field (infinite matrix): ann op. cre op.   [ ,  ]  [ ,  ]      0  0 F F B B B B I I J J  ˆ 1 1 2 2 ˆ acting on Fock space: ( ˆ , )  z z z z 1 1 2 2 F z z F m n   [ , ] 0  B B IJ mn 0 F 1 2 1:1 N × N PDE ,    0 , 1 , 2 ,... z z m n 1 2 H C n n k × k Matrix eqs. integration Occupation number basis Sol.= instantons Sol.=ADHM data ˆ ˆ  2 ( ˆ , ) Tr F z z (G=U(N), C =k) (G=`U(k)’) H 2   ˆ  , , F F m m n n : , : , : • NC ASDYM eq. (real rep.) , , , 1 2 1 2     m m n n : B I J 1 2 1 2 A N N k k k N N k 1 , 2 m , m , n , n  1 2 1 2 ˆ ˆ       1 , 0 F F H 01 23  O  Gauge trf.: Gauge trf.: 1  1 0   ˆ ˆ    ~ ~ ~         , 1 1 1 , ( ) F F A   g A g g g    B g B g g U k  0 2  02 31   1 , 2 1 , 2 H  O  ~ ~ ˆ ˆ  ( )     2 2 1 , 0 g U N     I g I J J g F F 03 12 1

  2. 2015/11/14 Fourier ‐ Mukai ‐ Nahm transformation Fourier ‐ Mukai ‐ Nahm transformation Beautiful duality between instanton moduli on 4 ‐ tori Beautiful duality between instanton moduli on 4 ‐ tori and instanton moduli on the dual tori and instanton moduli on the dual tori 4dim. ASDYang-Mills eq. 4dim. ASD Yang-Mills eq. 4dim. ASDYang-Mills eq. 4dim. ASD Yang-Mills eq. on a 4-torus on the dual torus on a 4-torus on the dual torus ~ ~ ~ ~ G   0   0     F F 0 F F 0 F F F F z z z z z z z z 1 1 2 2     1 1 2 2     1 1 2 2 1 1 2 2  ~  0 ~ 0 F F   N × N PDE 0 N × N PDE 1:1 0 F F F z z k × k PDE z z k × k PDE 1 2   1 2   1 2 1 2 Sol.=instantons 1:1 Sol.=the dual instantons Sol.=instantons Sol.=the dual instantons (G=U(N), C =k) (G=U(k), C =N) (G=U(N), C =k) (G=U(k), C =N) 2 2 2 2 map F (Dirac eq.) ~ ~   :   ( ) ,   : A x V V ( ) : A N N A k k A k k       Define the maps F & G,  N × N ~            ( ) 0 : ( , 1 ) V e A ix V e i   2 & G ◦ F=id. & F ◦ G=id.    a : 2  V k N  On a 4-torus On the dual 4-torus On a 4-torus : On the dual 4-torus : x Family index thm.   Fourier ‐ Mukai ‐ Nahm trf. (radii of the torus  ∞ ) Fourier ‐ Mukai ‐ Nahm transformation Beautiful duality between instanton moduli on 4 ‐ tori Duality between instanton moduli on R and instanton moduli on the dual tori and instanton moduli on ``1pt.’’ [cf. van Baal, hep ‐ th/9512223] 4dim. ASDYang-Mills eq. 4dim. ASD Yang-Mills eq. 4dim. ASDYang-Mills eq. 0dim. ASD Yang-Mills eq. ~ ~ ~ ~ ~ on a 4-torus on the dual torus      : [ , ] F A A A A        ~ ~ ~ ~     0   0   F F 0 F F 0 F F F F z z z z     z z z z     1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 Matrix eq.!  ~  ~ 0 0 F F   1:1 0 1:1 0 N × N PDE F N × N PDE F z z k × k PDE z z k × k PDE 1 2 1 2     1 2 1 2 Sol.=instantons Sol.=the dual instantons Sol.=instantons Sol.=``dual instantons’’ (G=U(N), C =k) (G=U(k), C =N) (G=U(N), C =k) (G=U(k), ``C =N’’) 2 2 2 2 map G (Dirac eq.) map F (0dim Dirac eq.) ~ ~ ~     ( ) :       A x N N ( ) , A V V : A A k k          ~ k × k             (    )   0 ( ) 0 V e A ix V e D e A i            x Matrix eq. !  N   : 2 : 2 k V k N 4  On the dual 4-torus  1 pt. On a 4-torus : On the dual 4-torus : On a 4-torus  R x Linear alg. Family index thm.   D ‐ brane interpretation of ADHM Construction Atiyah ‐ Drinfeld ‐ Hitchin ‐ Manin (ADHM) Construction based on the following duality [Witten, Douglas] 4dim. ASDYang-Mills eq. ADHM eq.. (≒0dim. ASDYM) 4dim. ASDYang-Mills eq. ADHM eq. (≒0dim. ASDYM) [ , ]  [ , ] RHS is in fact z z z z (G=U(N), C =k) (G=`U(k)’) 2 1 1 2 2 G(4dim D.eq.) G(4dim D.eq.)   [ ,  ]  [ ,  ]      0   [ ,  ]  [ ,  ]      0 0 0 F F B B B B I I J J F F B B B B I I J J 1 1 2 2 1 1 2 2 z z z z z z z z 1 1 2 2 1 1 2 2     [ , ] 0 [ , ] 0  B B IJ  B B IJ 0 0 F F 1 2 1 2 N × N PDE F(0dim D.eq.) N × N PDE F(0dim D.eq.) z z z z 1 2 1 2 k × k matrix eq. k × k matrix eq. 1:1 Sol.=instantons Sol.=ADHM data SUSY trf. of gaugino D-term conditions (G=U(N), C =k) (G=`U(k)’) 2 0-0 strings  k × k: B       Proved in the F :  ,  0-4 strings  k × N : I,J B  k k : A N N 1 , 2 ● same way as        ( , )  diag F F   ● SD ASD : , :   I J the Nahm trf. k N N k ● N D4 branes k D0 branes 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend