x ray polarization by reflection from accretion disc in
play

X-ray polarization by reflection from accretion disc in AGN Michal - PowerPoint PPT Presentation

X-ray polarization by reflection from accretion disc in AGN Michal Dov ciak Astronomical Institute of the CAS Prague Marin & Goosmann Svoboda & Karas Matt Muleri Di Lalla Strasbourg Astronomical Astronomical Institute


  1. X-ray polarization by reflection from accretion disc in AGN Michal Dovˇ ciak Astronomical Institute of the CAS Prague Marin & Goosmann Svoboda & Karas Matt Muleri Di Lalla Strasbourg Astronomical Astronomical Institute University IASF INFN Observatory Prague Roma Tre Rome Pisa 10 th International Workshop on Astronomical X-ray optics 4 th –7 th December 2017,Prague, Czech Republic

  2. Scheme of the lamp-post geometry ◮ central black hole → mass, spin Corona: P p , χ p ◮ accretion disc Disc: P loc , χ loc → Keplerian, geometrically thin, → Chandrasekhar (1960) optically thick and neutral Relativistic effects: χ o , χ d , χ do ◮ compact corona → isotropic power-law emission → static (or slow motion) observer → height, photon index a ◮ relativistic effects: corona → Doppler and gravitational energy shift → light bending (lensing) → aberration (beaming) h δ i δ e black hole ◮ references: → Matt (1993) M ∆Φ r → Dovˇ ciak, Muleri, Goosmann, in Ω Karas & Matt (2011) r accretion disc out

  3. Stokes parameters at infinity � � S ( P p , χ p ) = S ( 0 , − )+ P p [ S ( 1 , 0 ) − S ( 0 , − )]cos 2 χ p +[ S ( 1 , π / 4 ) − S ( 0 , − )]sin 2 χ p � I ( E ) = G p I p ( E / g p ) + Σ d S G I loc ( E / g ) Q ( E ) = G p P p ( E / g p ) I p ( E / g p ) cos 2 [ χ p ( E / g p )+ χ o ] + � Σ d S G P loc ( E / g ) I loc ( E / g ) cos 2 [ χ loc ( E / g )+ χ do ] U ( E ) = G p P p ( E / g p ) I p ( E / g p ) sin 2 [ χ p ( E / g p )+ χ o ] + � Σ d S G P loc ( E / g ) I loc ( E / g ) sin 2 [ χ loc ( E / g )+ χ do ] I loc , P loc and χ loc depend on: ◮ local geometry of scattering ( µ i , µ e , ∆ ϕ ) ◮ incident polarisation properties ( P p , χ p , χ d )

  4. Relativistic effects – lamp to observer 15 tan χ o = a β − h sin θ o inclination a 2 sin θ o + β h 30 ° 12 60 ° relativistic change 85 ° χ o [deg] 9 of polarisation angle χ o : ◮ is relatively small 6 (and zero for non-rotating BH) 3 ◮ has counter-clockwise direction 0 ◮ increases with 1 10 100 h [GM/c 2 ] → inclination → BH spin → lower height

  5. Relativistic effects – lamp to disc 30 Relativistic change of polarisation angle χ d : 0 ◮ is quite large -30 (especially close χ d [deg] to the BH) height ◮ has mostly clockwise -60 1.1 direction 1.5 ◮ special relativistic effects -90 3 important (aberration) ◮ for highly spinning BH 50 -120 and very low heights, 1 10 100 1000 gravitational dragging r [GM/c 2 ] causes rotation in counter-clockwise direction

  6. Change of polarization angle and transfer function → important when integrating over the disc surface → polarization angle changes due to aberration and light bending → emission is amplified due to beaming and lensing → depolarization around the critical point

  7. Unpolarised primary radiation → importance of the local polarization properties → geometry of scattering (incident, emission and relative azimuthal angles) → source height, observer inclination and black hole spin → formation of additional depolarizing critical points → illumination pattern depends on height of the source

  8. Energy dependence θ o =30 ° , h=3, P L =0% θ o =30 ° , h=3, P L =100%, χ L =0 ° θ o =30 ° , h=3, P L =100%, χ L =45 ° 6 100 100 Spin a=0 a=1 90 90 4 80 80 P [%] P [%] P [%] 70 70 2 60 60 Spin Spin a=0 a=0 a=1 a=1 0 50 50 1 10 1 10 1 10 E [keV] E [keV] E [keV] θ o =30 ° , h=3, P L =0% θ o =30 ° , h=3, P L =100%, χ L =0 ° θ o =30 ° , h=3, P L =100%, χ L =45 ° 2 50 10 45 χ [ °] χ [ °] χ [ °] 0 0 40 Spin Spin Spin a=0 a=0 a=0 a=1 a=1 a=1 -10 -2 35 1 10 1 10 1 10 E [keV] E [keV] E [keV] ◮ polarisation changes with energy → primary power-law decrease and reflection Compton hump ◮ features at the energies of spectral lines and edges

  9. Dependence on height θ o = 30 ◦ P L =0% P L =100%, χ L =0 ° P L =100%, χ L =45 ° 9 100 100 2-6 keV 6-10 keV 10-20 keV 20-50 keV 75 75 6 P [%] P [%] P [%] 50 50 3 25 25 2-6 keV 2-6 keV 6-10 keV 6-10 keV 10-20 keV 10-20 keV 20-50 keV 20-50 keV 0 0 0 1 10 100 1 10 100 1 10 100 h [GM/c 2 ] h [GM/c 2 ] h [GM/c 2 ] ◮ larger changes in polarisation and de-polarisation for higher energies ◮ larger effect for higher spin ◮ largest polarisation for small heights ( h � 10) ◮ significant de-polarisation for all heights

  10. Dependence on inclination h = 3GM / c 2 P L =0% P L =100%, χ L =0 ° P L =100%, χ L =45 ° 100 100 2-6 keV 6-10 keV 15 10-20 keV 20-50 keV 75 75 10 P [%] P [%] P [%] 50 50 5 25 25 2-6 keV 2-6 keV 6-10 keV 6-10 keV 10-20 keV 10-20 keV 20-50 keV 20-50 keV 0 0 0 0 30 60 90 0 30 60 90 0 30 60 90 θ o [ ° ] θ o [ ° ] θ o [ ° ] ◮ larger changes in polarisation and de-polarisation for higher energies ◮ larger effect for higher spin ◮ largest polarisation for inclinations 55 ◦ � θ o � 75 ◦ ◮ usually significant de-polarisation for all inclinations

  11. Reflection versus absorption – MCG-6-30-15 6 6 6 Polarization degree [%] Polarization degree [%] Polarization degree [%] reflection1 reflection1 reflection2 reflection2 absorption absorption 4 4 4 2 2 2 reflection1 reflection2 absorption 0 0 0 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 E [keV] E [keV] E [keV] 15 15 15 Polarization angle [deg] Polarization angle [deg] Polarization angle [deg] 10 10 10 5 5 5 0 0 0 -5 -5 -5 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 E [keV] E [keV] E [keV] Absorption scenario – clumpy wind : 30 ◦ Inclination: → constant polarisation degree and angle Spin: a = 0 , a = 1 Photon index: Γ = 2 Reflection scenario : h = 2 . 5GM/c 2 Height: → energy dependent polarisation degree and angle Primary pol. deg: P = 0 , 2 , 4 % Primary pol. ang: χ = 0 ◦ see Marin et al. (2012) MNRAS, 426, L101

  12. Simulation of the reflection in MCG-6-30-15

  13. Reflection versus absorption – NGC-1365 10 10 10 Polarization degree [%] Polarization degree [%] Polarization degree [%] reflection1 reflection1 reflection1 reflection2 reflection2 reflection2 8 8 8 absorption absorption absorption 6 6 6 4 4 4 2 2 2 0 0 0 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 E [keV] E [keV] E [keV] 20 20 20 Polarization angle [deg] Polarization angle [deg] Polarization angle [deg] 15 15 15 10 10 10 5 5 5 0 0 0 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 E [keV] E [keV] E [keV] Absorption scenario – obscuring circumnuclear clouds : 60 ◦ Inclination: → constant polarisation degree and angle Spin: a = 0 , a = 1 Photon index: Γ = 2 Reflection scenario : h = 2 . 5GM/c 2 Height: → energy dependent polarisation degree and angle Primary pol. deg: P = 0 , 2 , 4 % Primary pol. ang: χ = 0 ◦ see Marin et al. (2013) MNRAS, 436, 1615

  14. Simulation of the reflection in NGC-1365

  15. Summary of results ◮ relativistic effects from the lamp to the observer are small ◮ relativistic effects from the lamp to the disc are large even for high heights and large radii ◮ largest polarisation degree for high spin, low heights, inclinations of 55 ◦ − 75 ◦ and high energy ◮ expected variation of polarisation angle with energy is ∆ χ � 10 ◦ ◮ polarisation by reflection in AGN will probably not be observable with near future polarimetry missions such as IXPE or eXTP Advertisement: Codes KYNBB and KYNLPCR usable inside XSPEC with polarisation computations included are available at https://projects.asu.cas.cz/stronggravity/kyn

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend