x
play

X 1 ILC : PHYSICS FROM TERA- TO PLANCK-SCALE 1. Introduction X - PowerPoint PPT Presentation

X 1 ILC : PHYSICS FROM TERA- TO PLANCK-SCALE 1. Introduction X Physics base and perspectives 2. ILC Physics Targets in Micro-Universe X Electroweak Symmetry Breaking X Ultimate Unification / Supersymmetry X Extra Space


  1. X 1 ILC : PHYSICS FROM TERA- TO PLANCK-SCALE 1. Introduction X – Physics base and perspectives 2. ILC Physics Targets in Micro-Universe X – Electroweak Symmetry Breaking X – Ultimate Unification / Supersymmetry X – Extra Space Dimensions 3. Cosmology Connection 4. Conclusions

  2. 1. INTRODUCTION Basic laws of Nature ∼ 10 − 15 cm : Standard Model of particle physics ⊕ Gravity Central problems in micro-Universe ... AA – Mechanism of electroweak symmetry breaking X X ⇐ Higgs or alternative ? AA – Unification of forces - including gravity AAA X X ⇐ Supersymmetry ? AA – Space-time structure at short distances AAA X X ⇐ Dimensions > 4 ? ... and macro-Universe AA – Connection with cosmology AAA AAA AAA AAA ⇐ Cold Dark Matter? ⇐ Baryon Asymmetry? ⇐ ... X 2

  3. TARGETS ⇐ LHC and ILC break-through discovery and high-resolution picture of Terascale scenario ⇒ unification of matter and interactions canonical path: Standard Model | Supersymmetry ⇒ GUT/Planck Scenario alternative: Standard Model ⇒ Extra Space Dims : stdd | TeV Planck Scenario SCENARIOS : – generally not without tension but: – representative for extended classes [MSSM ∼ SUSY] – prove comprehensive coverage of theoretical glacis [weak ... strong elwSB] LITERATURE : “Physics Chapter of RDR” : A.Djouadi, J.Lykken, K.M¨ onig, Y.Okada, M.Oreglia, S.Yamashita “Scenarios for ILC in 2010” : F.Richard, arXiv:0707.3723 [hep-ph] “Snowmass ILC Report / LCWS07” : Kilian, Z: hep-ph/0601217 X 3A

  4. TARGETS ⇐ LHC and ILC break-through discovery and high-resolution picture of Terascale scenario ⇒ unification of matter and interactions canonical path: Standard Model | Supersymmetry ⇒ GUT/Planck Scenario alternative: Standard Model ⇒ Extra Space Dimens : stdd | TeV Planck Scenario BASE OF TALK : ... central physics targets of ILC : √ s = 500 GeV | upgrade = 1 TeV e − / 90 [ e + / 60] polarization e − e − | eγ/γγ | GigaZ LITERATURE : “Physics Chapter of RDR” : A.Djouadi, J.Lykken, K.M¨ onig, Y.Okada, M.Oreglia, S.Yamashita “Scenarios for ILC in 2010” : F.Richard, arXiv:0707.3723 [hep-ph] “Snowmass ILC Report / LCWS07” : Kilian, Z: hep-ph/0601217 X 3B

  5. XXX 2A. ELECTROWEAK SYMMETRY BREAKING 4 – missing keystone of Standard Model – indicator of physics landscape beyond SM realizations: standard wk Higgs mechanism [ SM, SUSY, ... ] ⇓ strong elw symmetry breaking [ Little Higgs, strong WW, ... ] ⇑ topology extra space dim [ H ∼ 5th gauge field, BC : higgsless, ... ] m Limit = 144 GeV 6 Theory uncertainty a) SM HIGGS MECHANISM ∆α (5) ∆α had = 5 0.02758 ± 0.00035 0.02749 ± 0.00012 a) – light Higgs: suggested by precision data [EWWG: 4 incl. low Q 2 data ∆χ 2 3 M H = 76 +33 − 24 GeV | < 144 GeV (95% CL) 2 1 a) – probability 15% Excluded Preliminary 0 30 100 300 m H [ GeV ]

  6. XXX 2A. ELECTROWEAK SYMMETRY BREAKING 4 – missing keystone of Standard Model – indicator of physics landscape beyond SM realizations: standard wk Higgs mechanism [ SM, SUSY, ... ] ⇓ strong elw symmetry breaking [ Little Higgs, strong WW, ... ] ⇑ topology extra space dim a) SM HIGGS MECHANISM a) – light Higgs: suggested by precision data digression: a) – ⇒ 110 +8 − 10 ± 3 GeV in mSUGRA X Buchm¨ uller ea

  7. X Three central questions ⇐ after Higgs discovery at LHC XX 1. Higgs field filling vacuum ⇒ scalar field XX ⋆ 2. mass generation by Higgs interaction ⇒ Higgs coupling prop mass XX ⋆ 3. elw symmetry breaking : Higgs potential ⇒ non-zero vacuum value X (1) Higgs = fundamental scalar : Higgs-strahlung near threshold: 15 σ [ e + e − → ZH ] ∼ cross section (fb) p s − ( m H + m Z ) 2 J=0 10 J=1 ruling out : 0 − , 1 − , 2 − , 3 ± , ... J=2 5 1 + , 2 + no TL ang correl 0 210 220 230 240 250 Miller,D.J. ea AAA s (GeV) AAA Lohmann ea AAA 5A

  8. 2 central questions (2) Higgs couplings to SM particles : Coupling - Mass R e l a tion Higgs coupling – mass relation: Coupling con s t a nt to Higg s bo s on ( κ ι ) √ H t 1 p g ( Hpp ) = 2 2 G F m p W Z ⇐ proving mass generation by inter- 0 . 1 action with Higgs field b Higgs-strahlung : e + e − → ZH c τ 0 . 01 WW fusion XX : e + e − → ννH 1 10 100 ⇒ production cross sections Mass (GeV) AAA ACFA LC Study ⇒ decay branching ratios AAA improving on LHC significantly: ⇒ Higgs radiation off top AAA precision and model-indep slope ∼ strg BSM scale 2 .. 3 TeV AAA /Z/W/τ/b/t/ = / 1 / 1 / 3 / 2 / 2% ∼ univ 0 + mix [radion] AAA 5B

  9. XXX (3) Higgs potential 6A elw SB ⇐ non-zero Higgs field v generated by shifted min of potential : V = λ [ | φ | 2 − 1 2 v 2 ] 2 √ φ = ( v + H ) / 2 self-interaction : M 2 M 2 H H 2 + 1 H 3 + 1 V = 1 2 M 2 v 2 H 4 H H v 2 8 trilin coupling ⇒ bending of potential ⇒ shift of minimum XX measurement: e + e − → ZHH e + e − → ννHH √ s = 1 TeV : 12% BSM H sector ∼ 1 TeV LHC → SLHC for MH > 140 GeV

  10. ✄ � ✁ ✂ ✂ ☎ ✁ ✁ � ✁ ✁ � � ✁ ✁ � � XXX (3) Higgs potential 6B elw SB ⇐ non-zero Higgs field v generated by shifted min of potential : V = λ [ | φ | 2 − 1 2 v 2 ] 2 √ φ = ( v + H ) / 2 self-interaction : M 2 M 2 H H 2 + 1 H 3 + 1 V = 1 2 M 2 v 2 H 4 H H v 2 8 0.3 trilin coupling ⇒ bending of potential SM Double Higgs-strahlung: e + e - → ZHH σ [ fb ] ⇒ shift of minimum 0.2 ● measurement: e + e − → ZHH √ s = 800 GeV ● e + e − → ννHH 0.1 ● √ s = 500 GeV √ s = 1 TeV : 12% 0 100 120 140 160 180 BSM H sector ∼ 1 TeV M H [ GeV ] uhlleitner ea | Gay | Yamashita (ea) LHC → SLHC for MH > 140 GeV M¨

  11. AAA 7B b) SUSY HIGGS BOSONS Higgs sector extended to 2 doublets ⇒ 5 physical particles in MSSM : h 0 light ≤ 140 GeV | generically < 200 GeV H 0 , A 0 , H ± typically v to 1 TeV detection at LHC: blind wedge ILC: pairs /w mass up to E B [Desch ea] 250 50 tan β -1 ATLAS ATLAS ATLAS - 300 fb 40 maximal mixing 225 HA → 4b - Signal 30 200 + 0 0 0 - h H A H 20 4-fermion 175 + - number of entries 0 2-fermion h H 0 0 0 h H A 150 10 - tt 9 8 125 7 6 0 h only 5 100 4 LEP 2000 75 0 0 3 h H LEP excluded 50 2 + + - 0 0 0 - 0 h H h H A H 25 0 1 350 400 450 500 550 600 650 700 750 800 50 100 150 200 250 300 350 400 450 500 reconstructed mass sum [ GeV ] m A (GeV)

  12. AAA 7C b) SUSY HIGGS BOSONS Higgs sector extended to 2 doublets ⇒ 5 physical particles in MSSM : h 0 light ≤ 140 GeV H 0 , A 0 , H ± typically v to 1 TeV detection at LHC: blind wedge γγ → H, A : +50% g [M¨ uhlleitner ea, Gunion ea, X F: Niezurawski ea ] A 50 tan β -1 ATLAS ATLAS ATLAS - 300 fb 40 maximal mixing 30 + 0 0 0 - h H A H 20 + 0 - h H 0 0 0 h H A 10 9 8 7 6 0 h only 5 4 LEP 2000 0 0 3 h H LEP excluded 2 + + 0 0 0 - 0 - h H A H h H 1 50 100 150 200 250 300 350 400 450 500 m A (GeV)

  13. AAA 8A SUSY EXTENSIONS : CP Violation : 130 H 1 , H 2 masses [ GeV ] 125 h 0 , H 0 mix A 0 ⇒ H 0 1 , H 0 2 , H 0 CPX scenario 120 3 tan β = 5 115 ∧ M H + = 150 GeV – changing spectra and production 110 M SUSY = 1 TeV 105 F: Carena ea 100 95 – CP : ττ polarization 90 85 asymmetry in circularly pol γγ 80 -125 -100 -75 -50 -25 0 25 50 75 100 125 arg (A t ) = arg (A b ) [ deg ] (a) H3ZZ 1 , g 2 g 2 USSM, NMSSM, etc : H1ZZ H2ZZ , g 2 g 2 – additional (light) singlets: H1ZZ H3ZZ g 2 -1 h 0 , H 0 ⊕ H ′ 0 ⇒ H 0 10 1 , H 0 2 , H 0 3 g 2 A 0 ⊕ A ′ 0 ⇒ A 0 1 , A 0 H2ZZ 2 F: Miller,D.J. ea -2 10 -125 -100 -75 -50 -25 0 25 50 75 100 125 arg (A t ) = arg (A b ) [ deg ] (b)

  14. AAA 8B SUSY EXTENSIONS : CP Violation : h 0 , H 0 mix A 0 ⇒ H 0 1 , H 0 2 , H 0 3 – changing spectra and production F: Carena ea – CP : ττ polarization asymmetry in circularly pol γγ USSM, NMSSM, etc : – additional (light) singlets: h 0 , H 0 ⊕ H ′ 0 ⇒ H 0 1 , H 0 2 , H 0 3 A 0 ⊕ A ′ 0 ⇒ A 0 1 , A 0 2 F: Miller ea

  15. AAA 9A c) STRONG ELW SYMMETRY BREAKING new strong interaction sector: global symmetry breaking ⇒ [pseudo-] Goldstone bosons ∼ Higgs particles LITTLE HIGGS THEORIES large global symmetry group | f ∼ TeV : 10 4 √ s = 800 GeV e − e + → t ¯ tb ¯ b rich spectrum of TeV particles L = 1 ab − 1 � 1000 #evt / 2 GeV plus light Higgs sector g ttη = 0.2 m η = 50 GeV pseudoscalar η : e + e − → t ¯ 100 t η | η → b ¯ b 100 150 X F: Kilian, Rainwater, ReuterX 10 parameters : e + e − → f ¯ f and Z h 0 50 100 150 b ) [GeV] M inv ( b ¯ almost completely covered

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend