workshop 10 4 generalized linear models
play

Workshop 10.4: Generalized linear models Murray Logan August - PDF document

-1- Workshop 10.4: Generalized linear models Murray Logan August 16, 2016 Table of contents 1 Exponential family distributions 2 0.1. Linear models Homogeneity of variance 2 . 0 0 . . 2 0 .


  1. -1- Workshop 10.4: Generalized linear models Murray Logan August 16, 2016 Table of contents 1 Exponential family distributions 2 0.1. Linear models Homogeneity of variance   σ 2 . 0 0 ··· . .  σ 2  0 . ··· σ 2 )   y i = β 0 + β 1 × x i + ε i ε i ∼ N ( 0 , . V = cov = . . .   . . σ 2 � �� � � �� �  . .  ··· Linearity Normality σ 2 0 . ··· ··· Zero covariance (=independence) . . . 0.2. Other data types • Binary - only 0 and 1 (dead/alive) (present/absent) • Proportional abundance - range from 0 to 100 • Count data - min of zero

  2. -2- 0.3. Linear models 12 a) b) Present 1.0 ● ● ● ● ● ● ● ● ● 10 Predicted probability 0.8 of presence 8 Frequency 0.6 6 0.4 4 0.2 Absent 2 0.0 ● ● ● ● ● ● ● ● ● ● ● 0 0.0 0.4 0.8 X • expected values outside logical bounds • response not normally distributed 0.4. Logistic models 12 b) b) Present 1.0 ● ● ● ● ● ● ● ● ● 10 0.8 8 Frequency 0.6 6 0.4 4 0.2 Absent 2 0.0 ● ● ● ● ● ● ● ● ● ● ● 0 0.0 0.4 0.8 X • expected values outside logical bounds • response not normally distributed 1. Exponential family distributions

  3. -3- 1.1. Gaussian distribution Virtually unbound measurements (weight, lengths etc) Probability density function Cumulative density function µ = 25, σ 2 = 5 µ = 25, σ 2 = 2 µ = 10, σ 2 = 2 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 2 σ 2 π e − ( x − µ )2 f ( x | µ , σ 2 ) = 1 2 σ 2 √ 1.2. Binomial distribution Presence/absence and data bound to the range [0,1] Probability density function Cumulative density function n = 50 n = 20 n = 3 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 ( n ) p k (1 − p ) n − k f ( k | n , p ) = p

  4. -4- 1.3. Poisson distribution Count data (or count derivatives - like low densities) Probability density function Cumulative density function λ = 25 λ = 15 λ = 3 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 f ( x | λ ) = e − λ λ x x ! 1.4. Negative Binomial Count data (or count derivatives - like low densities) Probability density function Cumulative density function n = 25 n = 10 n = 1.5 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 µ x ω ω f ( x | µ , ω ) = Γ( x + ω ) Γ( ω ) x ! × ( µ + ω ) µ + ω

  5. -5- 1.5. General linear models Homogeneity of variance   σ 2 . 0 0 ··· . .  σ 2  0 . ··· σ 2 )   y i = β 0 + β 1 × x i + ε i ε i ∼ N ( 0 , . V = cov = . . .   . . σ 2 � �� � � �� �  . .  ··· Linearity Normality σ 2 0 . ··· ··· Zero covariance (=independence) . . . E ( Y ) = β 0 + β 1 x 1 + ... + β p x p + ε , ε ∼ Dist (...) � �� � � �� � Link function Systematic 1.6. General linear models E ( Y ) = β 0 + β 1 x 1 + ... + β p x p + e � �� � � �� � � �� � Random Link function Systematic • Random component. E ( Y i ) ∼ N ( µ i , σ 2 ) A nominated distribution (Gaussian, Poisson, Binomial, Gamma, Beta,. . . ) 1.7. General linear models E ( Y ) = β 0 + β 1 x 1 + ... + β p x p + e � �� � � �� � � �� � Random Link function Systematic • Random component. • Systematic component β 0 + β 1 x 1 + ... + β p x p • Link function 1.8. Generalized linear models

  6. -6- Response vari- Probability Distribu- Link function Model name able tion Continuous Gaussian identiy: Linear regression measurements µ Binary,proportions Binomial logit: Logistic regression ( ) π log 1 − π probit: Probit regression ∫ α + β . X 1 ( − 1 2 Z 2 ) exp dZ √ 2 π −∞ complimentary: Logistic regression log ( − log (1 − π )) Quasi-binomial logit: Logistic regression ( ) π log 1 − π Counts Poisson log: Poisson regression / log µ log-linear model Negative binomial Negative binomial ( µ ) log µ − θ regression Quasi- log: Poisson regression poisson log µ 1.9. OLS Parameter estimates 6 8 10 12 14 Sum of squares µ =10 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 6 8 10 12 14 Parameter estimates

  7. -7- 1.10. Maximum Likelihood 2 σ 2 π e − ( x − µ )2 f ( x | µ , σ 2 ) = 1 2 σ 2 √ 2 ln σ 2 − ∑ 2 ln L ( µ , σ 2 ) = − n 2 ln (2 π ) − n 1 i =1 ( x i − µ ) 2 2 σ 2 Maximum likelihood estimates: ∑ n x = 1 µ = ¯ ˆ i =1 x i n σ 2 = 1 ∑ n x ) 2 ˆ i =1 ( x i − ¯ n 1.11. Maximum Likelihood Parameter estimates 6 8 10 12 14 Log−likelihood µ =10 ● ● ● ● ● 6 6 6 8 8 8 10 10 10 12 12 12 14 14 14 Parameter estimates

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend